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Abstract. We assume that the cosmological constant Λ is the sum of a general-relativistic

term and of the quantum, scale-varying, gravitational self-energy of virtual pairs. A

renormalization group approach is used to describe its scale-dependence. We argue that

the large scale value of Λ is reached at the classical electron scale. This reasoning

provides us with a large-number relation: α (mP/me)  =  (L/lP)
1/3

, (where L = Λ−1/2, α is

the fine structure constant, me the electron mass,  mP and lP  the Planck mass and length),

which yields a value of Λ in agreement with present observational limits.
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Several unsolved problems plague present cosmology. One of the

most serious is the cosmological constant problem: the theoretical

expectations of Λ exceed observational limits by some 120 orders of

magnitude.1,2 Indeed it has been realized that the vacuum energy density

acts just like a cosmological constant Λ. The trouble comes from the fact

that, when it is estimated from quantum field theory, this density is of the

order of the Planck density, ρP  =  c5/h
_
G 2   ≈ 5 x  1093 g/cm3, while the

observational bound2 is currently ρV = Λc2/G ~< 4 x  10−29 g/cm3. Such a

combination of microphysical and cosmological concepts, along with the

ratio ≈(1040)3 of these two quantities suggests to us that this question may

be related to two other fundamental proposals, namely Mach's principle and

Dirac's large-number coincidences.

 There are actually 3 “levels” of what is usually called “Mach's

principle”, each of which corresponds to increasingly profound relations

between the local and the global physics:

(i) The first consists in requiring that the inertial frames are determined by

the distant masses: Einstein's theory of general relativity satisfactorily

implements this principle.3

(ii) The second (‘Mach-Dirac's principle’) contemplates the possibility that

the masses of elementary particles are related to structures of the universe

as a whole.7 This hope is founded on the Eddington-Dirac “large-number”

coincidences:

(a)  
mP

m   ≈  1020   ,   (b)   
c/Ho

lP
  ≈  1060  ,   (c)      

Μ
m  ≈  1080 , (1)

where mP = (h
_
c/G)1/2 is the Planck mass, lP = (h

_
G/c3)1/2 is the Planck length,

m is a typical elementary particle mass and Μ  is the typical observed mass

in the universe. From (1a) and the fact that e2 ≈ h
_
c, the ratio of the electric

force over the gravitational force for an elementary particle of charge unity
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is e2/Gm2 ≈ 1040. Equations (1a) and (1b) are often combined to be written

as m ≈ (h
_2 Ho / Gc)1/3. The trouble is that the Hubble “constant” varies with

time: this led Dirac to propose his cosmology with varying constants, guided

as he was by the idea that these relations describe “fundamental though as

yet unexplained truths”.3  But observations and experiments have now

ruled out variations of constants large enough to account for these

relations.8,9  Their current interpretation is in terms of ‘anthropic principle’

considerations.6,10

(ii) The third (‘Mach-Einstein's principle’) requires that the inertial forces

themselves be determined by the gravitational field of the whole universe.4-6

Except for the unrealistic Einstein's model, only some particular

cosmological models are Machian in this sense, namely the flat models (Ωtot

= ΩM + ΩΛ = 1, where ΩM=8πGρ/3H2 and ΩΛ=Λc2/3H2). Indeed, as

shown by Sciama,5 the implementation of this principle requires ascribing

inertia to an inductive effect of distant matter. This implies that the

gravitational field of the universe cancels that of local matter, or, in other

words, that the total energy (inertial + gravitational) of a particle at rest with

respect to the universe is zero. This condition reads GMm/r ≈ mc2, i.e., it is

expressed by the Schwarzschild-like condition GM/c2r ≈ 1.5,6 For models

with a cosmological constant, this condition writes strictly 2GM/c2r + Λr2/3

= 1. If we take r = c/H, and M = 4
3
πρ(c/H)3, it becomes precisely the above

flat model relation Ωtot = 1. These models are the only ones for which Ω is

unvarying with time, i.e. the Mach-Sciama relation is satisfied whatever the

epoch. However a serious drawback to such a solution is that inertia is

observed to be highly isotropic, in agreement with Einstein’s equivalence

principle,3 while the Sciama solution would imply a small but measurable

effect of masses as large as that of our Galaxy and the local supercluster of

galaxies.3
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In fact, the implementation of the ‘Mach-Einstein’ principle would

imply to reach a very profound level of physical knowlegde. Indeed, it

amounts to express G in terms of the distribution of matter in the universe.

But from the three fundamental constants G, h
_
 and c, one may construct

the three natural Planck units of mass, length and time. Excluding G from

the fundamental irreducible constants would finally amount to reduce the

mass unit to length and time units.15 Such a grand goal is to be contrasted

with the present stage of physics, which is still unable to predict the mass

ratios of elementary particles or the values of the fundamental coupling

constants.

The aim of this letter is to propose a new solution to the cosmological

constant problem, which naturally implements the ‘Mach-Dirac’ principle.

Let us first recall that the cosmological constant is the inverse of the square

of a length L:

L  =  
1
Λ1/2    . (2)

The self-consistency of general relativity requires that it is an absolute

constant, while observations impose2 ΩΛ ~< 1, i.e. L ~> c/√3Ho ≈ 2 Gpc. Its

ratio with the Planck length defines a fundamental dimensionless number:

K  =  
L
lP

  =   ( c3

h
_
GΛ)

1/2
   . (3)

The present observational limit on Λ yields K ~> 3 x 1060.

Let us further describe the vacuum energy density problem. When

considering the vacuum at a resolution r ≈ c∆t, the Heisenberg uncertainty

relations tells us that  its energy is E ≈ h
_
c/r, yielding a vacuum energy

density ρv ≈ h
_
c/r4. This is a divergent quantity when r→0, so that one

usually introduces a cutoff at the Planck scale which yields the 10120 too

large result quoted at the beginning of this letter. However, as noticed by
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Zeldovich,11  the zero point energies themselves are unobservable : only the

quantum fluctuations have a physical meaning. Zeldovich suggested that the

actual vacuum energy is given by the gravitational energy of the virtual

particle-antiparticle pairs which are continuously created and annihilated in

the vacuum.  This energy reads Gm2(r)/r, where m(r) is the effective mass at

scale r, i.e. m(r) ≈ h
_
/cr. This yields an energy density

ρv =   ρP   ( lP

r  )6
 (4)

still equal to the Planck density at the Planck scale.

Our proposal is that, as is already the case of several quantities in

quantum field theories, the vacuum energy density is an explicitly scale-

dependent quantity. For example the electric charge is known to increase

when the length-scale decreases below the Compton length of the electron,

as a result of vacuum polarization by virtual particle pairs.16 Though its

small scale (‘bare’) value is much higher than its Bohr scale value (it is even

formally divergent in today’s QED), we know that the bare charge is

irrelevant for low energy processes where it has fallen to its classical value.

We suggest that the same is true of the vacuum energy density, since the

vacuum is indeed characterized by its scale-invariance (in geometrical terms,

one would speak of its fractal character).12-14

So let us describe this scale dependence by a renormalization group

equation

dρ
dlnr   =   γ(ρ)  . (5)

The γ function is a priori unknown, but may be expanded,  provided ρ<<1,

to first order about the origin as γ(ρ) = γ0 + γ1 ρ. Then Eq. (5) is solved as

ρ   =   ρo [ 1 + ( 
ro
r  )–γ1 ]  . (6)
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where we have set  ρo = –γ0/γ1, and where ro is an integration constant. The

comparison with Eq. (4) yields γ1  = –6. However the truly remarkable

result here is that, when keeping the zero-order term  γ0 in the γ function,

not only a power law scale-dependence is obtained, but also the transition

(about scale ro) to scale-independence at large length-scales. Equation (6)

tells us that the vacuum energy density at infinity (i.e. the truly

cosmological constant) is given by ρ(∞) = ρo, but also that ρ(ro) = 2ρo.

Then the cosmological vacuum energy density is given, up to a factor of 2,

by its value at the transition scale as derived from the asymptotic formula.

Such a behaviour is understandable is one considers that the total

cosmological constant is indeed the sum of a geometrical constant term

issued from general relativity, and of a quantum, scale-dependent, term due

to the virtual pair self-energies, i.e., Λ = ΛG + ΛQ(r). Then Eq.(6) can be

understood as telling us that the matching of these two contributions

naturally occurs at the scale where the quantum contribution ends.

Now the computation of the cosmological constant amounts to the

determination of the scale ro. A first lower limit on Λ is given by the

Compton scale of the electron λe = h
_
/mc, since it is only for energy scales

larger than ≈ 2mec2, i.e. for length scales smaller than ≈ λe/2 that the

phenomenon of virtual pair creation and annihilation begins to occur.

However, since we are concerned here with the internal self-energies of the

electron and positron of the pair, its typical scale is rather given by the e+e–

annihilation cross-section, which reads in terms of the energy scale (to

lowest order)16

σ(e+e–)  =  π re
2  (mec2

E ), (7)

where re =  α λe   is the ‘classical radius’ of the electron and α ≈ 1/137.036

is the fine structure constant.  This formula can be interpreted as meaning
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that, in the quantum theory, the effective ‘radius’ of the electron (which is a

scale-dependent quantity r(E)) is precisely its classical radius at its own mass

scale, namely  r(mec2) = re. So we propose that the transition scale ro can be

identified with the scale re. This suggestion is reinforced by the fact that the

scale re seems indeed to play a remarkable role in particle physics: it

corresponds to an energy of 70.02 MeV, while the effective mass of quarks

in the lightest meson (π±) is ≈ mπ/2 = 69.78 MeV and, more importantly,

the Quantum-Chromo-Dynamical scale is found to be ΛQCD
(6)  = 66 ± 10

MeV, for 6 quark flavours and the recently improved value of the QCD

coupling at the Z boson scale,17 αs(mZ) = 0.112 ± 0.003. Such a scale may

also correspond to the end of the quark-hadron transition.

Inserting the value of re in Eq. (4), we find that the cosmological

constant is Λ = (KlP)–2, with the fundamental pure number K given by the

relation:

 α  
mP

me
  =  K

1/3
   . (8)

 Note that the same result is obtained by remarking that the existence

of the fundamental large scale L implies the existence of a very small

characteristic energy Emin = h
_
c/L, and by subsequently assuming that the

gravitational self-energy of the electron at scale re equals precisely Emin.

Equation (8) yields a precise estimate for the fundamental number K:

K =  (5.3 ± 2)  x  1060  , (9)

which agrees with the current observational limit K ~> 3 x 1060 and provides

us with an explanation for one of the Dirac-Eddington large number

coincidences (Eqs.1 a and b). Note that the quoted error corresponds to an

uncertainty by a factor of ≈2 on the vacuum energy density, which may

come from the uncertainty on threshold effects at the transition scale, and

from the uncertainty of the transition scale itself (re?,  ΛQCD
(6) ?); but if we let
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re be as large as ≈λc/2,  K would reach 2.5 1064. To the estimate of Eq. (9)

there corresponds a value of the cosmological constant:

Λ  =  
1
L2  =  1.36 x 10−56  cm−2  , (10)

i.e., ΩΛ = Λc2/3Ho
2 = 0.36 h−2 (where h = Ho / 100 km/s.Mpc). Such a value

would help solve the problem of the age of the universe. For example if

k = 0, it becomes larger than the observational limit2 ≈13 Gyr provided h <

0.75. This condition is relaxed to h ~< 0.85 if Ωtot is allowed to be less than 1.

In this case ΩM would be low enough (~< 0.1) to be accounted for by

baryons only, without disagreement with primordial nucleosynthesis.

Let us end this letter by remarking that the Sciama relation may also

be implemented in a new (time-independent) way by requiring that the

universe reaches its black hole horizon at length scale L rather than c/H.

This can be done in every Robertson-Walker dust models, since their  prime

integral ρR3 = cst  allows one to define a constant  characteristic mass:

M =  
3κ
8π    

c3

GH   ΩM  ( k
ΩM+ΩΛ−1)

3/2
   , (11)

where κ depends on the geometry (for example κ=2π2 if M is the total

mass of a spherical model). The black hole conditions now reads 2GM/c2L

+ ΛL2/3 = 1, which becomes (since ΛL2 = 1)

3 G M
c2 L

   =   1   . (12)

Even though combining Eqs. 8 and 12 allows us to account for the second

large-number coincidence (Eqs. 1b and 1c):

M
me

   =   
K4/3

3α
   , (13)
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this does not mean that the ‘Mach-Einstein principle’ is implemented either,

since the question of the origin of the high isotropy of inertia remains asked.

A more detailed account of this approach, along with a development

of new proposals concerning the physical meaning of the Planck scale13,14

and of the cosmic scale L,14 will be given in a forthcoming work.
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