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a b s t r a c t

Based on laboratory based growth of plant-like structures from inorganic materials, we present new
theory for the emergence of plant structure at a range of scales dictated by levels of ionization, which can
be traced directly back to proteins transcribed from genetic code and their interaction with external
sources of charge in real plants.

Beyond a critical percolation threshold, individual charge induced quantum potentials merge to form a
complex, interconnected geometric web, creating macroscopic quantum potentials, which lead to the
emergence of macroscopic quantum processes. The assembly of molecules into larger, ordered structures
operates within these charge-induced coherent bosonic fields, acting as a structuring force in compe-
tition with exterior potentials. Within these processes many of the phenomena associated with standard
quantum theory are recovered, including quantization, non-dissipation, self-organization, confinement,
structuration conditioned by the environment, environmental fluctuations leading to macroscopic
quantum decoherence and evolutionary time described by a time dependent Schr€odinger-like equation,
which describes models of bifurcation and duplication.

The work provides a strong case for the existence of quintessence-like behaviour, with macroscopic
quantum potentials and associated forces having their equivalence in standard quantum mechanics. The
theory offers new insight into evolutionary processes in structural biology, with selection at any point in
time, being made from a wide range of spontaneously emerging potential structures (dependent on
conditions), which offer advantage for a specific organism. This is valid for both the emergence of
structures from a prebiotic medium and the wide range of different plant structures we see today.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

The fundamental mechanisms by which molecules assemble
into the diverse range of structures that describe living systems
remains an open question. As suggested by Schr€odinger
(Schr€odinger, 1944), it should be possible to describe all these
processes from first principles as pure physical processes. These
initial ideas, along with many other notable contributions, have
over the intervening years inspired a substantial body of work in
areas such as metabolic networks, non-linear behaviour of complex
biological systems and morphogenesis. A few notable examples,
which provide a backdrop to the present paper, include references
(Turing, 1952; Waddington, 1957; Mitchell, 1961; Britten and
Davidson, 1969; Prigogine et al., 1969; Guyton et al., 1972;
Prigogine et al., 1973, 1991; Savageau, 1976; Kauffman, 1993;
Prigogine, 1997; Kitano, 2001; Brent, 2004; Wolkenhauer, 2001;
Westerhoff and Palsson, 2004; Kirschner, 2005). However, despite
significant progress in these fields, a full understanding of the
complexity associated with the genome and its interactions with
the environment in dictating structure and function remains illu-
sive, even for relatively simple biological systems where the entire
genome has been mapped.

An interesting step in solving this challenge relates to work by
Fr€ohlich (Fr€ohlich, 1968) who made a connection between long
range coherent molecular excitations and long-range biological
order. This work is supported by Prigogine and coworkers
(Prigogine et al., 1969; Prigogine et al., 1973, 1991; Prigogine, 1997),
suggesting that ‘many body’ complex systems should be described
by models based on probability density, suggesting that complex
macroscopic systems are irreducibly probabilistic in a manner
equivalent with Quantum Mechanics (QM). This work leads on to
the identification of the importance of collective correlative effects,
which contrasts with coarse-grained models, which assume that
trajectory dynamics are the whole story, involving an averaging
process over the underlying dynamics. However, whilst this work
offers important insights into what follows in the present paper,
attempts to build a unified classical/quantum theory have not yet
converged toward a formalism which could be practically used.

This general concept of collective correlation emerged again in a
recent review (Goushcha et al., 2014), suggesting that a ‘flux of
energy or matter through a system’ enables its transition to a new
ordered state. These different ideas sit at the heart of the study of
complexity in extended dissipative systems contained within the
framework of ‘self-organized criticality’. The concept has applica-
bility across a range of non-equilibrium processes from biological
systems to plasmas. However, despite significant progress in this
field, a number of key questions around exactly how these
processes work in practice remain unresolved (Sharma et al., 2016).
The focus of the present paper is to address key gaps in our

knowledge identified in earlier work by reconsidering the concepts
of long-range excitation, self-organized criticality and the funda-
mental physical principles, which underpin self-organization. At
the heart of this process we need to explain why we get any
structure at all. According to the second law of thermodynamics, in
the absence of a force acting on a system, matter should dissipate,
rather than assemble into structures with long-range order.

We start with the suggestion that a significant first step in the
identification of a ‘missing force’ associated with quintessence-like
behaviour (Witten, 2002) driving self-organization has already
been taken (Auffray and Nottale, 2008; Nottale and Auffray, 2008).
The fresh insight in this work includes the introduction of the
concept of ‘collective macroscopic quantum forces’ playing a
potentially critical role in the emergence of biological structure, an
idea developed within the theory of scale relativity (Nottale, 1989,
1993, 2009, 2011, 2014a, 2014b).

A key objective of the current work is to explore, test and vali-
date the theoretical principles proposed in (Auffray and Nottale,
2008; Nottale and Auffray, 2008). However, whilst this earlier
work considered systems biology at a general level, an in depth
study of such a large and diverse field would be impractical within
the constraints of a single paper. Thework is therefore confined to a
limited set of experimental and theoretical developments focussed
on the physical principles underpinning the emergence of structure
in plants. At the end of the paper we then consider the potential
‘universal applicability’ of the principles established, not just to
plants, but all living systems, as well as considering how the
principles driving self-organization could be applied in a new
theoretical approach to the development and control of structure in
materials development.

Taking a systematic approach, Section 2 summarizes key theo-
retical concepts developed within the theory of scale relativity,
which form the basis for new ideas developed in subsequent sec-
tions. It begins with an introduction to basic principles followed by
a description of the geometric foundations of quantum mechanics
(QM), which leads onto a derivation of a generalized Schr€odinger
equation, including an equivalent fluid mechanics representation,
from first principles.

In Section 3 we briefly consider the concept of competing
quantum and dissipative systems and the geometric origins of
quantum decoherence, whilst Section 4 considers experimental
evidence and theory of quantum and dissipative processes to
explain the emergence of the diverse array of structures that we
observe in plants.



1 For simplicity cW is not considered here since it vanishes when taking the mean
(Nottale, 2011).
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2. Theoretical framework

2.1. Basic principles

The theory of scale relativity shares the basic principles of
covariance, the geodesic principle and the principle of equivalence
that underpin the theory of general relativity, but re-formulated in
a new context to include QM. At the most fundamental level, the
theory challenges the Gauss hypothesis of local flatness, which
underlies Riemannian geometry, i.e., the apparently smooth geo-
desics of space-time at the macro-scale described by general rela-
tivity are an incomplete description of the structure of space-time
at the micro-scale.

If we are to understand QM in terms of space-time geometry, we
need to rethink its structure in a way that reflects our under-
standing of the mechanics. In simple terms, the hypothesis states
that the structure of space-time has both a smooth (differentiable)
component at the macro-scale and a chaotic, fractal (non-differ-
entiable) component at the micro-scale. At the macroscale, the
fractal component and its influence is small and generally consid-
ered unimportant in classical physics. However, at the microscale,
the fractal component and its influence dominate, with quantum
laws originating in the underlying fractal geometry of space-time,
the space transition taking place at the de Broglie length scale
ldeB ¼ Z=p, whilst the time transition is Z=E.

To understand the implication of a fractal space-timewe need to
consider the scale dependence of the reference frames (C�el�erier and
Nottale, 2001). This means adding resolution ε to the usual vari-
ables (position, orientation, motion) defining the coordinate sys-
tems. However, resolutions can never be defined in an absolute
way. Only their ratio has a physical meaning, allowing an extension
of the principle of relativity to that of scales (Nottale, 2011; C�el�erier
and Nottale, 2001).

2.2. Geometric foundations

The transition of a system from the classical to the quantum
regime occurs when three critical conditions are satisfied (Nottale,
2011). The first is that the paths or trajectories are infinite in
number, leading to a non-deterministic and probabilistic, fluid like
description in which the velocity v(t) on a particular geodesic is
replaced by a Eulerian velocity field v(x,t), where the concept of a
single trajectory has no meaning. The second, that the paths are
fractal curves, transforming the velocity field into a fractal velocity
field.

V ¼ Vðx; t;dtÞ: (1)

The velocity field is therefore defined as a fractal function,
explicitly dependent on resolutions and divergent when the scale
interval tends to zero. The third condition relates to the funda-
mental breaking of a discrete symmetry implicit in differentiable
physics (the reflection invariance on the differential element of
[proper] time), which leads to two fractal velocity fields Vþðx; t; dtÞ
and V�ðx; t; dtÞ, which are no longer invariant under transformation
jdtj/� jdtj in the non-differentiable case. These velocity fields
may in turn be decomposed, i.e.,

Vþ ¼ vþðx; tÞ þwþðx; t; dtÞ; (2)

V� ¼ v�ðx; tÞ þw�ðx; t; dtÞ: (3)

The (þ) and (�) velocity fields comprise a ‘classical part’ ðvþ; v�Þ
which is differentiable and independent of resolution, and fractal
fluctuations of zero mean ðwþ;w�Þ, explicitly dependent on the
resolution interval dt and divergent at the limit dt/0.
A simple and natural way to account for this doubling consists in
using complex numbers and the complex product (Nottale, 2011).
The three properties of motion in a fractal space lead to a
description of a geodesic velocity field in terms of a complex fractal
function. The full complex velocity field reads.

~V ¼ bV þ cW
¼
�
vþ þ v�

2
� i

vþ � v�
2

�
þ
�
wþ þw�

2
� i

wþ �w�
2

�
: (4)

The jump from a real to a complex description is the origin of the
real and imaginary components in the wave function (Nottale,
2011). However, as we show in what follows this is not con-
strained to the microscale.

2.3. A geodesic approach to quantum mechanics

The origins of the hypothesis of space-time as a fractal fluid, can
be traced back to Feynman (Feynman and Hibbs, 1965), who sug-
gested that the typical quantummechanical paths that are themain
contributors to the ‘path integral’, are infinite, non differentiable
and fractal (to use current terminology). This is in agreement with a
number of papers for both non relativistic and relativistic quantum
mechanics, which have confirmed that the fractal dimension (DF) of
the paths is DF ¼ 2 (Abbott and Wise, 1981; Kraemmer et al., 1974;
Campesino-Romeo et al., 1982; Allen, 1983; Ord, 1983; Nottale and
Schneider, 1984).

If we consider elementary displacements along these geodesics,
dX± ¼ d±xþ dx±. In the critical case DF ¼ 2, for the geodesics in
standard QM, this reads.

d±x ¼ v±dt; (5)

dx± ¼ z±

ffiffiffiffiffiffiffi
2~D

p ���dt���1=2: (6)

dx represents the fractal fluctuations or fractal part of the
displacement dX. This interpretation corresponds to a Markov-like
situation of loss of information from one point to another, without
correlation or anti-correlation. Here z± represents a purely math-
ematical dimensionless stochastic variable such that hz±i ¼ 0 and
hz2±i ¼ 1, themean 〈〉 being described by its probability distribution.
~D is a fundamental parameter which characterizes the amplitude of
fractal fluctuations. Since dx is a length and dt a time, it is given by
the relation.

~D ¼ 1
2

D
dx2
E

dt
; (7)

its dimensionality is therefore [L2T�1].
When considering the geodesics of a fractal space, the real and

imaginary parts of the velocity field can be expressed in this case in
terms of the complex velocity field.1

bV ¼ V � iU: (8)

This equation captures the essence of the principle of relativity
in which any motion, however complicated and intricate the path,
should disappear in the proper reference system.

bV ¼ 0: (9)
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We now introduce the complex ‘covariant’ derivative operatorbd=dt, which includes the terms which allow us to recover differ-
entiable time reversibility in terms of the new complex process
(Nottale, 1993, 2011).

bd
dt

¼ 1
2

�
dþ
dt

þ d�
dt

�
� i
2

�
dþ
dt

� d�
dt

�
: (10)

Applying this operator to the position vector yields the differ-
entiable part of the complex velocity field.

bV ¼
bd
dt

x ¼ V � iU ¼ vþ þ v�
2

� i
vþ � v�

2
: (11)

Deriving Eq. (9) with respect to time, it takes the form of a free
strongly covariant geodesic equation.

bd
dt
bV ¼ 0: (12)

In the case of a fractal space, the various effects can be combined
in the form of a complex covariant derivative operator (Nottale,
1993, 2011),

bd
dt

¼ v

vt
þ bV $V� i~DD; (13)

which is analogouswith the covariant derivativeDjAk ¼ vjAk þ Gk
jlA

l

replacing vjAk in Einstein's general relativity (in the sense that it
allows one to implement the principle of covariance). This allows us
towrite the fundamental equations of physics under the same form
they had in the differentiable case (Nottale, 2011), i.e. the funda-
mental equation of dynamics becomes,

m
bd
dt
bV ¼ �Vf; (14)

which is now written in terms of complex variables and of the
complex time derivative operator. Which, in the absence of an
exterior field f, is a geodesic equation.

In describing the three essential conditions required for quan-
tum behaviour, we have shown how the first two conditions are
shared with diffusive systems, typical of Brownian motion and
more generally of Markov processes, with Eq. (6) describing fluc-
tuations in Brownian motion. In these types of processes, a particle
follows a random walk in which both direction and distance are
uniformly distributed random variables. In moving from a given
position in space to any other, the path taken by the particle has a
very high probability to fill the whole space before reaching its
destination, hence as with QM, Brownian motion is also charac-
terized by DF ¼ 2. However, whilst the two processes share the first
two conditions, the third condition - the complex velocity field
differentiates between quantum and dissipative systems, an issue
that we revisit in Section 3.
2.4. The Schr€odinger equation and its equivalent fluid
representation with a quantum potential

After expansion of the covariant derivative, the free-form mo-
tion equations of general relativity can be transformed into a
Newtonian equation in which a generalized force emerges, of
which the Newton gravitational force is an approximation. In an
analogous way, the covariance induced by scale effects leads to a
transformation of the equation of motion, which, as we demon-
strate through a number of steps in Section 7.1 (supplementary
material), leads to a generalized Schr€odinger equation Eq. (15).
~D
2
Djþ i~D

v

vt
j� f

2m
j ¼ 0; (15)

where ~D identifies with the amplitude of the quantum force, which
is more general than its standard QM equivalent ðZ=2mÞ, accom-
modating both the one body and many body case (either distin-
guishable or indistinguishable particles) (Nottale, 2009, 2011), as
well as the possibility of macroscopic values.

This Eq. (15) can alternatively be written as a combination of
Euler and continuity equations (Eqs. (16) and (17)).

m
�
v

vt
þ V$V

�
V ¼ �Vfþ 2m~D

2
V

 
D
ffiffiffi
P

pffiffiffi
P

p
!
; (16)

vP
vt

þ divðPVÞ ¼ 0; (17)

where Eq. (16) describes a fluid subjected to an additional quantum
potential Q Eq. (18).

Q ¼ �2m~D
2D

ffiffiffi
P

pffiffiffi
P

p : (18)

This system of equations, the detailed derivation of which is
outlined in Section 7.2 (supplementary material), is equivalent to
the classical system of equations of fluid mechanics (with no
pressure and no vorticity), except for the change from a density of
matter to a density of probability. The potential energy term Q, is a
manifestation of the fractal geometry and probability density, with
fractal space-time fluctuations (at the micro-scale) leading to the
emergence of a ‘fractal field’, a potential energy (‘quantum poten-
tial’) and a quantum force which are directly analogous with the
geometric origins of the gravitational field, gravitational potential
and gravitational force which emerge as a manifestation of the
curved geometry of space-time.

The potential energy Q is a generalization of the quantum po-
tential in standard QM, which relies on Z, but which is here
established from the geodesic equation as a fundamental mani-
festation of the fractal geometry. It is implicitly contained in the
Schr€odinger form of the equations, but only explicit when reverting
to the Euler representation. A particle is therefore described by a
wave function (constructed from the geodesics), of which only the
square of the modulus P is observable, the ‘field’ being given by a
function of P, or density of matter r (since r ¼ PM, i.e.,
j ¼ ffiffiffi

r
p � eiA=Z when M ¼ 1).

This new geometric approach to quantum theory offers some
important new insights. Classical quantities relate to the quantum
world as averages (Ehrenfest theorem). Conversely quantum
properties remain at the heart of the classical world. We have
shown that the action of fractality and irreversibility on small time
scales can manifest itself through the emergence of a macroscopic
quantum-type potential energy, in addition to the standard clas-
sical energy balance. This potential energy leads to the possibility of
‘new’ macroscopic quantum effects, no longer based on the
microscopic constant Z, which are normally masked by classical
motion, but can be observed given the right conditions, a subject
we address in detail in Section 4.
3. Quantum decoherence

3.1. The transition from diffusion to quantum coherence

In Section 2.2 we differentiate between a diffusive system
described by a fractal velocity field Eq. (1) and a quantum system



2 A ubiquitous characteristic of fractal networks.
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described by a complex velocity field Eq. (4). We now revisit these
two systems and their role in quantum decoherence.

In Section 7.3 (supplementary material) we consider the details
which lead to the description of a diffusion system in the form of a
Euler equation Eq. (19).

�
v

vt
þ V$V

�
V ¼ �2D2V

 
D
ffiffiffi
P

pffiffiffi
P

p
!
: (19)

This compares in a striking way with the quantum equivalent in
the free case Eq. (20) (Nottale and Auffray, 2008).

�
v

vt
þ V$V

�
V ¼ þ2~D

2
V

 
D
ffiffiffi
P

pffiffiffi
P

p
!
: (20)

The two equations demonstrate a clear equivalence between a
standard fluid subjected to a force field and a diffusion process with
the force expressed in terms of the probability density at each point
and instant.

The ‘diffusion force’ derives from an external potential.

fdiff ¼ þ2D2D
ffiffiffi
P

p . ffiffiffi
P

p
: (21)

which introduces a square root of probability in the description of a
totally classical diffusion process. The quantum force is the exact
opposite, derived from the ’quantum potential’, which is internally
generated by the fractal geodesics.

Q=m ¼ �2~D
2
D
ffiffiffi
P

p . ffiffiffi
P

p
: (22)

This interpretation offers new insights into quantum deco-
herence in both standard QM and in macroscopic quantum sys-
tems such as High Temperature Super Conductivity (HTSC)
(Turner and Nottale, 2015), where the two forms of potential
energy exist and compete in quantum systems, summarized by
the total system-environment Hamiltonians (HS � HE), and their
interaction (Hint).

H ¼ HS þ HE þ Hint : (23)

The description of competing quantum and dissipative forces
fits well with decoherence theory described by the model of
‘quantum Brownian motion’ (Zurek, 2003; Schlosshauer, 2014).
During the decoherence process, the time evolution of position-
space and momentum-space is reflected in the superposition's of
two Gaussian wave packets (Schlosshauer, 2014). Interference be-
tween the twowave packets is represented by oscillations between
the direct peaks. Interaction with the environment damps these
oscillations. While the momentum coordinate is not directly
monitored by the environment, the intrinsic dynamics, through
their creation of spatial superposition's from superposition's of
momentum, result in decoherence in momentum space as the two
valuedness associated with the complex component iU of the ve-
locity field (Eq. (8)) begins to break down. This leads to the emer-
gence of pointer states, which are minimum-uncertainty Gaussians
(coherent states), well-localized in both position and momentum,
thus approximating classical points in phase space (Zurek, 2003;
Joos et al., 2003; Kubler and Zeh, 1973; Paz et al., 1993; Zurek,
1993; Diosi and Kiefer, 2000).

This process appears to have been well described. However, an
important question remains relating to the origin of ‘pointer
states’ in the decoherence process (Zurek, 2003, 2013;
Schlosshauer, 2014). Within the context of a fractal fluid of geo-
desics constituting a standard or macroscopic quantum system
r ¼

���j���2, we set the hypothesis that the emergence of pointer
states is linked to a fundamental root structure2 underpinning the
fractal velocity field bV . During the process of decoherence, the
fractal velocity field collapses to its more stable roots. These roots
form the preferred set of states of an open system most robust
against environmental interaction, accounting for the transition
from a probabilistic to a deterministic classical description. A full
description of this concept within the context of standard QM, falls
outside of the scope of the current paper. However, we consider
this issue here, within the context of macroscopic quantum
systems.
3.2. Macroscopic quantum decoherence

Fractal stochastic fluctuations, dominate the quantum realm.
However they remain at the heart of the classical world as zero
averages, the fractal component being masked by the classical
contribution. In the scale relativistic foundation of standard quan-

tummechanics, the relation dx ¼ h
ffiffiffi
2

p
~D
���dt��� is considered valid at all

scales (Nottale, 2011). The de Broglie transition to the classical
realm is but an effective transition, which comes from the domi-
nation of the classical term dx ¼ vdt over the fractal term dx at
scales dx> Z=mv. The fractal part remains at macroscopic scales,
masked by classical motion.

The fractal-nonfractal transition (the boundary between
quantum coherence and classic systems) is blurred by the
numerous cases of mesoscopic interference experiments and
macroscopic quantum phenomena such as conventional super
conductivity (SC). The blurring of the transition is partly due to the
fact that the relative contributions of classical and fractal com-
ponents depends on the value of the transition, which is itself
relative, depending in particular on the state of motion of the
reference system. Namely, the de Broglie length-scale is
ldeB ¼ Z=p ¼ Z=mv for a free particle, while the de Broglie thermal

scale is lth ¼ Z=ð2mkTÞ1=2 ¼ Z=ðmhv2i1=2Þ, and the de Broglie time
tdeB ¼ Z=E ¼ Z=12mv2). By way of illustration we consider the p
type cuprates which represent the most widely studied case of
high temperature super conductors (Turner and Nottale, 2015). As
with most cases of conventional super conductors (SC), we are not
dealing with a fully coherent system since the medium (an anti-
ferromagnetic cuprate structure) remains classical. In this
instance, electron-pair (e-pair) coupling energies are significantly
higher than conventional SC, leading to more thermally stable, but
localized e-pairs. Below a critical temperature Tc, the transition
from localization to coherence is facilitated by macroscopic
quantum potentials (MQP's) determined by a macroscopic de
Broglie scale ldeB ¼ 2~D=v), dependent on (Turner and Nottale,
2015):

� a scale free distribution of dopants (charges), the frequency and
extent of fluctuations being dependent on the DF and correlation
length of the scale free network.

� the pressure term, which is a function of matter density r, so the
velocity field V of a fluid in potential motion is described in
terms of a complex function j ¼ ffiffiffi

r
p � eiA=Z.

To summarize, macroscopic quantum coherence is only linked
to bosons (Turner and Nottale, 2015). In Section 4 we explore the
role of coherence and decoherence of bosonic fields in the deter-
mination of plant structures at different scales.



3 We note that in the structures reported here, acid treatment described by
Norrduin et al. (Noorduin et al., 2013) was not used. However, some preliminary
work was carried out with acid treatment to determine its impact on the mesoscale
structures observed. No change in the fractal mesoscale fractal structure was
observed.
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4. Macroscopic quantum mechanics: the origins of self-
organization

4.1. Background

A Schr€odinger-type equation is characterized by the existence of
stationary solutions, yielding well-defined peaks of probability
linked to quantization laws, which are themselves a consequence of
the limiting (or environmental) conditions, of the forces applied
and of the symmetries of the system. Peaks of probability density
distribution are interpreted as a tendency for a system to make
structures, allowing prediction of the most probable structures
among an infinity of close possibilities. This process is analogous
with living systems, where morphologies are acquired through
growth processes, which can be described in terms of an infinite
family of virtual, fractal and locally irreversible, fluid-like trajec-
tories, suggesting the possibility that they can be written in the
form of a macroscopic Schr€odinger equation (Eq. (15)), leading to
the emergence of quantized structures (Nottale and Auffray, 2008;
Nottale, 2011).

If the hypothesis is correct, once these processes are better
understood, it should be possible to apply this knowledge to grow
flowers and other plant like structures in non biological systems
from a range of bio-polymers and/or inorganic matter. During the
process of developing such an approach, the growth of a range of
BaCO3 � SiO2 based plant-like structures from solutions of BaCl2
and Na2SiO3 was reported (Noorduin et al., 2013). The work
demonstrated convincingly that alongside a range of boundary
conditions, levels of atmospheric CO2 played a key role in structure
formation. However, whilst there was speculation that ‘chemical
fields’ play a role in the process, an explanation of the mechanism
by which ordered structures (rather than e.g., crystalline or disor-
dered systems) emerged was not fully elucidated.

We set the hypothesis that these plant-like structures are in fact
driven by the equivalent of a macroscopic quantum mechanics-
type process. However, to validate this interpretation, theory dic-
tates that the internal mesoscale geometry of observed structures
must be predominantly fractal if they are to meet criteria for the
emergence of a macroscopic quantum potential (Eq. (82)), a pre-
requisite for macroscopic quantum processes.

Unfortunately the resolution of images published by Norrduin
et al. (Noorduin et al., 2013) was not at a level where a fractal
mesoscale structure could be confirmed. To validate, or refute our
hypothesis on fractality, key aspects of the work were replicated
and the emergent structures analysed using high resolution Field
Emission Scanning Electron Microscopy (FE-SEM). A successful
outcome would clarify our understanding of the mechanisms that
dictate the emergence of different structures, which may in turn
lead to better insights into plant morphogenesis.

4.2. Experimental work

4.2.1. Method
Stage 1. Growth of structures was conducted in a 250 ml glass

beaker, following experimental conditions described by Norrduin
et al. (Noorduin et al., 2013), with aqueous solutions of BaCl2
(19.1 mM) and Na2SiO3 (8.2 mM) prepared at pH 11.2. Growth was
carried out for 1 h at room temperature (z18

�
C) on polished

aluminium plates of the same size as standard microscope slides.
The plates were stood at an angle, with the solution coveringz30%
of its height, in a system open to atmospheric CO2.

Stage 2. The impact of CO2 levels on growth was tested to its
limits by repeating the work in a closed system, to allow control
over levels of CO2 during the growth period. In the first case,
ambient CO2 concentration was minimized by continuous purging
of the system (the atmosphere above the solution) with nitrogen
gas. In a second trial, the systemwas purgedwith a continuous flow
of gaseous CO2.

Stage 3. Stage 1 was repeated with ambient concentrations of
CO2 in a fridge at 4�C. This particular condition varied from the
method described by Norrduin et al. (Noorduin et al., 2013), where
only the solution was cooled to 4�C.

After each growth stage, emergent structures were carefully air
dried at room temperature following the description by Norrduin
et al. (Noorduin et al., 2013), before FE-SEM analysis.
4.2.2. Results and discussion
As reported previously by Norrduin et al. (Noorduin et al., 2013),

under Stage 1 conditions, a range of different plant-like structures
were observed over the growth region on the plate, from which a
sub-sample is reported here. Fig. 1a (900 x magnification) shows
examples of stem, leaf, pod and coral-like structures, whilst Fig. 1b
(2200 x magnification) illustrates a combination of cone, bowl and
leaf-like structures plus more ‘open’, flower-like structures (with
discrete petals) growing on top of more ordered structures.

In Fig. 1c (z4000 x magnification), we see a symmetric water-
lily-leaf structure, whilst Fig. 1d shows a smaller diameter,
partially ‘closed’ hemispherical structure at the stem apex. This
process of closure is almost complete in Fig. 1e where we see a pod
or fruit like structure.

In general, the relative proportions of the mix of different
structures varied, depending on proximity to the solution in which
the plate was standing. Objects closest to the solution interface
reflected a higher proportion of ordered structures typified by
Fig. 1aee. However, as distance from the solution increased, a
greater proportion of less ordered, fractal structures typified by
Fig. 1f (1800 x magnification) emerged.

To test our hypothesis that the internal mesoscale structure of
these plant-like objects should be fractal we increased image res-
olution. Fig. 2 illustrates an example of a 6000 x magnification of a
flower-like structure with discrete petals observed in Fig. 1b. At this
resolution we see a distribution of z10 nm diameter fibrils, which
we would typically expect from a fractal structure, generally ori-
ented in the direction of growth from a central point. The same
structure was found in the leaf like structures illustrated in Figs. 3
and 4 (an enlargement of Fig. 1c) and in an enlargement of a pod
structure (Fig. 5a),3 which resembles the structure of the Barrel
sponge (Xestospongia testudinaria). In Figs. 4 and 5a, the rim of the
leaf and pod structures indicates an z1 mm thick wall, with an
internal fractal architecture, which is revealed in more detail in
Fig. 5b.

The results confirm our hypothesis of an internal mesoscale
fractal structure in the plant-like structures reported by Norrduin
et al. (Noorduin et al., 2013), which satisfies a key condition for the
emergence of macroscopic order driven by macroscopic quantum
processes.

In describing a mechanism for the emergence of observed
structures we first consider the molecular to nm scale of assembly.
Quantum vacuum fluctuations (viewed as a sea of harmonic oscil-
lators), thermal fluctuations and associated phonons, are inextri-
cably linked and correlated. Acting collectively as ‘environmental
fluctuations’, they have a significant impact on the trajectory and
dynamics of unconstrained particles as they interact to form larger



Fig. 1. Observed plant-like structures in ambient CO2.
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structures. To understand their role in more detail, consider the
molecular scale environment created by CO2, identified by Norr-
duin et al. (Noorduin et al., 2013) as a critical variable.

CO2 solvation leads to the release of protons and the subsequent
ionization of BaCO3 � SiO2 molecules, with charge density r

determined by CO2 concentration and temperature T, which de-
termines CO2 solubility (increasing T / increasing r).

Repulsive forces between adjacent charged particles influences
the dynamics of molecular assembly during growth of the struc-
tures observed. At a simplistic level, increasing r leads to an in-
crease in the degree of molecular freedom to interact with
environmental fluctuations.

At an individual level, a single charge is repulsive. However, as
levels of charge increase, charges will cluster loosely, with Å-scale
holes within clusters creating attractive potential well's, whichmay
be interconnected, via channels between them, induced by charge
distribution (see Turner and Nottale (Turner and Nottale, 2015),
Figs. 3 and 4).

At a local level, clusters of charges constitute a quantum fluid
jn ¼
XN
n¼1

jdn
(24)

which is expected to be the solution of a Schr€odinger equation.

Z2

2m
Djn þ iZ

vjn
vt

¼ f jn; (25)

where f is an exterior potential.
We now introduce explicitly the probability density (charge

density) r and phase, which we define as a dimensioned action A of
the wave function jn ¼ ffiffiffiffiffi

rn
p � eiAn=Z. The velocity field of the

quantum fluid (n) is given by Vn ¼ ðZ=mÞVAn=Z.
Following Eqs. (79) and (81), we write the imaginary part of Eq.

(25) as a continuity equation and the derivative of its real part as a
Euler equation.



Fig. 3. Fractal mesoscale architecture of a leaf-like structure.

Fig. 4. Fractal mesoscale architecture of a Lilly leaf-like structure.

Fig. 5. Fractal mesoscale architecture of a pod (a). Insert (b) shows an enlarged
z1 mm2 section showing the internal fractal wall structure.

Fig. 2. Fractal mesoscale architecture of a flower-like structure.
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vVn

vt
þ Vn$VVn ¼ �Vf

m
� VQn

m
; (26)

vrn
vt

þ divðrnVnÞ ¼ 0: (27)

where Qn represents localized quantum potentials, dependent on
local fluctuations of the density rn of static charges,

Qn ¼ � Z2

2m
D
ffiffiffiffiffi
rn

pffiffiffiffiffi
rn

p : (28)

As described in previous work (Nottale and Auffray, 2008),
successive solutions during time evolution of the time-dependent
Schr€odinger equation in a 2D harmonic oscillator potential
(plotted as isodensities), leads to a model of branching/bifurcation.
This original work was based on a macroscopic Schr€odinger equa-
tion using the macroscopic constant ~D. However, it is equally
applicable in the standard QM case based on Z, which we consider
here. Adopting this approach, the energy level varies from the
fundamental level (n ¼ 0) to the first excited level (n ¼ 1). As a
consequence the system jumps from a one-body to a two-body
branched structure (Fig. 6) which (given sufficient charge), leads
to a branched molecular assembly and the emergence of fractal
architectures.4 During this process, charge induced potential well's
will interconnect, creating a fractal network of channels, with the
charges acting as roots of the fractal web, which we illustrate in a
simplistic two dimensional model (Fig. 7).

Extending the scenario in Fig. 7 to a 3D fractal architecture will
lead to the emergence of a fractal distribution of static charges ðjdÞ
and a charge induced fractal velocity field bV . At a critical threshold,
destructive interference effects induced by collective charges jn,
cancel out of most frequencies, leaving a coherent resonant fre-
quency, dictated by the geometry of the fractal network. Evidence
for this type of behaviour in fractal networks is suggested by the
emergence of coherent e-pairs in HTSC or photons in Coherent
4 We note that whilst the model can be illustrated by an harmonic oscillator
potential (2D or 3D) and by box solutions (Nottale, 2011), it is a very general feature
of solutions of the Schr€odinger equation, whose fundamental (‘vacuum’) states
show a unique global structure while first excited states generally show a two-body
structure.



Fig. 6. Model of branching/bifurcation, described by successive solutions of the time-
dependent 2D Schr€odinger equation in an harmonic oscillator potential plotted as
isodensities (Nottale and Auffray, 2008).
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Random Lasing (CRL) (Turner and Nottale, 2015). The result is an
infinite connected web of coherent charge fluctuations defined by
~D, rather than Z; the extent of fluctuations (correlation length) is
determined by the scale of the structure formed.

This has the effect of transforming quanta of fractal fluctuations
jn ¼ ffiffiffiffiffi

rn
p � eiAn=Z (where An is a microscopic action), into macro-

scopic fluctuations creating the equivalent of a path integral, rep-
resented by a macroscopic wave function jN

XN
n¼1

jdn
/jN ¼ ffiffiffiffiffiffi

rN
p � eiAN=2~D; (29)

where AN is a macroscopic action and (since r ¼ Pm) m ¼ 1, and QN

is its associated MQP,

QN ¼ �2~D
2D

ffiffiffiffiffiffi
rN

pffiffiffiffiffiffi
rN

p : (30)

We can now re-write the Euler and continuity equations (Eqs.
Fig. 7. Individual charges collectively create a
(26) and (27)).

vVN

vt
þ VN$VVN ¼ �Vf

m
� VQN

m
; (31)

vrN
vt

þ divðrNVNÞ ¼ 0; (32)

which can be re-integrated under the form of a macroscopic
Schr€odinger equation,

~D
2
DjN þ i~D

vjN
vt

�
�
f

2

�
jN ¼ 0: (33)

In principle the molecular scale fractal architectures could be
expected to grow in a continuous process, until a point where
growth is constrained by a natural symmetry breaking at scales
>40 mm, when gravitational forces exceed van der Waals forces
(Nottale, 2011). However, in Figs. 2e5, we see the emergence of
z10 nm scale structures, in addition to an upper limit, which in
practice appears closer to z20 mm under the conditions in this
work. We note that a two-scale structure is almost universal in
diffusion limited growth processes such as plant cells, with cellu-
lose nano-fibres forming the fundamental building block of a
structural scaffold in the cell wall (Turner et al., 2011).

It appears that as a molecular scale fractal structure evolves, it
reaches a critical point, resulting in the emergence of nm-scale
structures. This smaller scale of assembly may be explained by van
der Waals forces playing a synergistic role alongside the macro-
scopic quantum potential (Eq. (30)) at the nm-scale. A more spec-
ulative, additional explanation lies in a second synergistic
(attractive) quantum potential originating from Casimir forces,
associated with the quantum vacuum itself. For a detailed treat-
ment of this topic we refer the reader to theoretical studies by
Simpson (Simpson, 2015) and references therein. Simpson's thesis
suggests that Casimir forces cannot be considered in isolation in an
inhomogeneous medium. Relating the ideas developed by Simpson
to our approach, the electromagnetic field associated with the
quantumvacuum is fundamentally coupled to the fractal molecular
scale medium, with quantization of the coupled system creating a
polariton ðjpolÞ.
geometric network of hills and valleys.



Fig. 9. Rare fractal arrangement of crystals formed in nitrogen.
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As in the case for charges (Eq. (29)), at a critical point (dictated
by polariton wavelength and fractal geometry), we see trans-
formation of quanta of polariton fractal fluctuations jpol ¼

ffiffiffiffiffiffiffiffi
rpol

p �
eiApol=Z (where Apol is a microscopic action), into macroscopic fluc-
tuations, represented by a macroscopic wave function jPOL

XN
n¼1

jdpol
/jPOL ¼

ffiffiffiffiffiffiffiffiffi
rPOL

p � eiAPOL=2~D; (34)

where APOL is a macroscopic action and.

QPOL ¼ �2~D
2 D

ffiffiffiffiffiffiffiffiffi
rPOL

pffiffiffiffiffiffiffiffiffi
rPOL

p ; (35)

is its associated MQP, which contributes to the emergence of
structure at the nm scale along with the charge induced MQP (Eq.
(30)) and so is added to the existing Euler and continuity equations
(Eqs. (31) and (32))

vVN

vt
þ VN$VVN ¼ �Vf

m
� VQN

m
�
�
vVPOL

vt
þ VPOL$VVPOL þ

VQPOL

m

�
;

(36)

vrN
vt

þ divðrNVNÞ ¼ �vrPOL
vt

� divðrPOLVPOLÞ; (37)

giving a newmacroscopic Schr€odinger equation incorporating both
jN and jPOL.

~D
2
DjN þ i~D

vjN
vt

� fjN ¼ �~D
2
DjPOL � i~D

vjPOL
vt

þ f jPOL: (38)

At the 10 nm scale we suggest that QPOL represents a small but
significant force F, which when combined with QN, leads to the
emergence of the nano-fibres. However, since F falls off rapidly
with distance d (F ¼ 1=d4 (Simpson, 2015)), this constrains their
size. However, given favourable conditions (e.g., lower tempera-
tures), it is theoretically possible that larger scales of nano-fibre
may emerge. Given the declining force with increasing d, beyond
this first scale of assembly, QPOL is expected to play a subordinate
role in the larger 10e20 mm scale structures (Figs. 1e5). However,
we suggest that quantum vacuum fluctuations still play a signifi-
cant role (as part of collective environmental fluctuations) in
bifurcation processes at the nm scale leading to fractal assembly of
nano-fibres into larger scale structures.

Our work suggests that the continued growth of structure
beyond the nm-scale in Figs. 1e5 is driven by charge density r and
Fig. 8. Crystals and cells formed
frequency u of fluctuations ~D, which determine the strength and
impact of the emergent MQP (Eq. (30)) within Eq. (33). The asso-
ciated fractal network of charge fluctuations plays a key role in the
transition frommesoscale tomacroscale structures. For example, as
r increases, charge induced channels between nano-fibres offer an
energetically favourable fractal network of paths for assembly,
leading to more spatially coherent structures. This is reflected in a
decrease in entropy and DF. We see this in a transition from den-
drites found in fractal structures (Fig. 1f) to leaf (Fig. 3), or
segmented flower structures (Fig. 2). With increased levels of
charge, we expect closure into more symmetric structures such as
that illustrated in Fig. 1c.

As charge and the associated field strength increases further, we
expect these symmetric structures to close in on themselves, a
process we observe first in hemispherical structures (Fig. 1d) and
subsequently pod-like structures (Fig. 1e and Fig. 5). In theory,
given sufficient charge, completely symmetric cell-like structures
should emerge. However, under Stage 1 conditions, charge was
insufficient to support this. We tested this hypothesis in Stage 2, by
varying levels of CO2 through nitrogen and CO2 rich environments.

The results were striking. Elevated levels of CO2 (maximum
charge) led to a monoculture of spherical, cell like structures
(Fig. 8b). By contrast, when CO2 was minimized by purging the
environment with nitrogen, we observed pure crystalline struc-
tures. Fig. 8a represents the form and scale of most of the material
(z5 mm cross section x 30 � 50 mm length). However, in addition
in nitrogen (a) and CO2 (b).



Fig. 10. Spheres formed in elevated CO2 at z18 �C(A) and ambient CO2 levels at 4 �C (B).

5 resembling the chalice sponge (Heterochone calyx).
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we observed the rare occurrence of a fractal crystal (Fig. 9), with
crystal structures right down to the nm scale.

These results indicate that as r/0, molecules, unhindered by
repulsive charges, are permitted to form a crystal lattice, its precise
structure determined by atomic/molecular structure and external
boundary conditions. In the case of fractal crystalline structures
(Fig. 9), we suggest that there was just enough charge to disrupt the
formation of larger scale crystals, with environmental fluctuations
leading to the emergence of a fractal assembly of smaller scale
crystals. These crystalline structures showed very clean surfaces,
reflecting a clear difference in morphology compared to the non-
crystalline structures in Figs. 2e5. Here, a fuzzy surface at higher
resolutions (Fig. 5b), is suggestive of a fractal molecular structure,
which could not be resolved in detail with the FE-SEM. These
findings appear to confirm the critical role of charge in the emer-
gence of the types of nm scale structure observed in Figs. 2e5.

Interestingly, alongside a range of structures, we also observed
the emergence of completely spherical structures in the Stage 3
trial (ambient levels of CO2) at 4 �C. However, there was a signifi-
cant difference in the mesoscale structure compared to results at
elevated CO2. Fig. 10A shows the detailed structure of a sphere from
Fig. 8b grown under elevated CO2 conditions, revealing a significant
increase in the size of nano-fibres (z250 nm diameter and z3 mm
length) relative to structures grown at ambient CO2 concentrations
(Figs. 2e5). This suggests that increased charge density r leads to an
increase in the QN potential (Eqs. (35)e(38)). The sphere grown at
4 �C Fig. 10B shows a further increase in the smallest scale fibres
(z1 mm diameter and up to 5 mm in length). This increase in size
combined with reduced environmental fluctuations leads to a low
DF fibril structure during assembly into a spherical morphology.
Fibril diameter is now at the same scale as the pod wall thickness in
Fig. 5, suggesting the sphere may be constructed from a single layer
of fibrils. Whilst this remains to be confirmed, the scale of the fibrils
suggests that despite the reduction in r, lower T (reduced envi-
ronmental monitoring) permits the emergence of larger molecular-
scale fractal networks, with Casimir forces linked to QPOL playing a
more significant role within the system compared to Fig. 10A.

We do not yet have conclusive evidence to support the hy-
pothesis of a fractal architecture at the molecular scale. However,
the differences in fuzzy surface topology of nm-fibrils in Figs. 2e5
and the clean surfaced crystalline structures in Fig. 9 is strongly
indicative of a fractal molecular structure in the former. In addition,
the hypothesis that fractal order exists at the molecular scale and
can lead to quantum coherence at the nm scale is supported by
Quochi et al. (Quochi et al., 2005; Quochi, 2010), where CRL was
reported in organic nano-fibres. At another level, we note that CRL
has been reported in inhomogeneous nano-fibre suspensions (Lee
et al., 2015), this contrasts with ordered systems in the same
work, where CRL disappeared, suggesting that a continuous
structure from molecular to nm scales is not essential for macro-
scopic coherence.

To confirm fractal order at molecular to mm scales, future work is
planned to determine charge distribution following an approach
reported by Fratini et al. (Fratini et al., 2010) using scanning syn-
chrotron radiation X-ray micro diffraction and a charge coupled
area detector. To complement this work, studies similar to those on
cellulose in plants using XRD and NMR (Testova et al., 2014) will be
used to confirm the absence (or presence) of crystalline structure in
nm scale structures.

4.2.2.1. Additional observations. In exploring the opportunity to
improve the resolution of FE-SEM images of structures, we varied
the electron beam voltage. The default setting was 3kv. As voltage
increased significantly, wemade an unexpected observation of high
levels of fluorescence in some of the plant-like structures we have
reported here. The fluorescence looked remarkably like that
observed in CRL.

In the absence of an alternative explanation for the fluorescence,
we speculate (rather tentatively) that the phenomenon might be
analogous with CRL, with electron fluorescence being an indicator
of macroscopic quantum coherence. As a first step in testing this
idea we assessed different structures at the standard 3kv setting
and at a higher level of 25kv. This represents the equivalent of a
significant increase in gain required to induce CRL: below a critical
level of gain CRL is not observed (Turner and Nottale, 2015). In
Fig. 11 we see examples from the assessment. On the left hand side
of Fig. 11 we see images of a sphere (A), chalice5(C), bone-like
structure (E) and crystals observed with a 3kv electron beam. On
the right, the same structures are observed at 25kv.

In the first pair of images (Fig. 11a and b), a distinctive fluores-
cence is observed in the right hand sphere at 25kv, with very little
of the nm-scale being observable, due to this fluorescence. In sub-
sequent images (Fig. 11cef), higher levels of fluorescence are
observed at 25kv in Fig. 11d and f, with the complete disappearance
of surface detail.

We speculate that the lower level of fluorescence in Fig. 11b is
due to better electron confinement, with the more open surface
structures in Fig. 11cef facilitating electron escape from the struc-
ture, supporting the analogy with CRL.

In the last pair of images of ordered crystalline structure
(Fig. 11geh), the distinctive fluorescence observed in structures



Fig. 11. Observation of fluorescence in non-crystalline materials.
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with fractal mesoscopic structure is absent. This is predicted if the
fractal architecture in Fig. 11aef is supporting macroscopic coher-
ence of electrons.

In considering an appropriate interpretation of these observa-
tions we need to ask if room temperature macroscopic electron
coherence (aided by high vacuum in the SEM) is theoretically
possible in these structures. If we consider previous theoretical
work (Turner and Nottale, 2015), then it may indeed be the case.
Taking a first principles approach, these structures meet a key
criteria for high temperature superconducting material, namely a
three dimensional fractal structure, and fractal charge density
distribution, which in the current experimental conditions emerges
naturally to form coherent structures such as spheres.

Previous experimental work (Turner and Nottale, 2015) has
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shown that e-pairs in the pseudo gap phase can exhibit coherence
at critical temperatures Tc well above room temperature. However,
in this earlier work e-pairs were localized and so did not contribute
to conduction. We postulated that if structures were designed
optimally in a 3D fractal architecture, then high strength macro-
scopic quantum potentials could theoretically support delocaliza-
tion and conduction at room temperatures (Turner and Nottale,
2015). The current work suggests that at least some of the
coherent plant-like structures (particularly spheres) could meet
these criteria. This idea is supported by work on photosynthetic
systems which provide conclusive evidence that relatively long-
lived quantum coherent states exist at room temperature in pro-
tein complexes (Engel et al., 2007; Collini et al., 2010).

We stress that whilst these preliminary observations appear
interesting, they were unexpected. As a first step, future work will
focus on confirming or refuting the possibility that the observed
fluorescence in these objects reflect macroscopic coherence of
electrons by measuring their Tc.

4.2.3. Modelling macroscopic structures with a macroscopic
Schr€odinger equation

Having considered the detail, which leads to the emergence of a
macroscopic quantum system, we suggest that a number of the
structures observed share common features and processes with
planetary nebulae (stars that eject their outer shells) reported by da
Rocha and Nottale (da Rocha and Nottale, 2003a; da Rocha and
Nottale, 2003b). In this earlier work, the chaotic motion of ejec-
ted material was modelled using a macroscopic Schr€odinger
equation, describing growth from a centre, corresponding to an
outgoing spherical probability wave, having well defined angular
solutions jðq;fÞ. Their squared modulus P ¼

���j2
��� is identified with

a probability distribution of angles characterized by the existence
Fig. 12. Examples of structures observed compared to quantized morphologies for ejection p
of maxima and mimima. These in turn are dependent on the
quantized values of the square of angular momentum L2, deter-
mined by the quantum number l and its projection Lz on axis z,
which is characterized by the quantum numberm. This means that
L2 and Lz can only take specific values proportional to these quan-
tum numbers, which are integers, allowing the prediction of
discrete morphologies. We see striking parallels between examples
of the two sets of structures illustrated in Figs. 12 and 13, but with
the caveat that the inorganic structures are constrained by growth
on a plate, whilst planetary nebulae in Fig. 13 show a double
ejection process in space.

In previous comparisons between this process and plant
morphogenesis (Nottale and Auffray, 2008), modelling of the
growth of flower-like structures, with morphologies evolving along
angles of maximal probability has been described. In the case of
flower-like structures, spherical symmetry is broken and one jumps
to discrete cylindrical symmetry. In the simplest case, a periodic
quantization of angle q (measured by an additional quantum
number k), gives rise to a segmented structure (discretized ‘petals’).
In addition, there is a discrete symmetry breaking along axis z
linked to orientation (separation of ‘up’ and ‘down’ due to gravity,
growth from a stem). This results in successive structures illus-
trated in Fig. 14, indicating the evolution of a range of possible
outcomes, which offers insight into the mechanism driving a
segmented flower-like structure such as that observed in Fig. 2.

We note that Fig. 14 gives an example of just one possible sce-
nario. Depending on the potential, on the boundary conditions and
on the symmetry conditions, a large family of solutions (structures)
can be obtained when conditions for the quantum-type regime are
fulfilled.

This work offers convincing evidence to support the hypothesis
that the emergence of inorganic, plant-like structures reported
rocesses associated with planetary nebulae determined by quantum numbers l and m.



Fig. 13. Examples of structures observed compared to quantized morphologies for ejection processes associated with planetary nebulae determined by quantum numbers l and m.
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here and by Norrduin et al. (Noorduin et al., 2013) can be explained
within the context of a macroscopic quantum-type process,
induced by a fractal network of charges.

The process is characterized by competing systems, which can
be controlled by either reducing external fluctuations HE (by
decreasing T) or increasing internal forces HS (by increasing r).
However, we note that with the exception of extreme conditions
illustrated in Stage 2 (Fig. 8), control is not precise, but impacts on
the probability of certain outcomes. This principle is reflected in the
probability of the emergence of fractal structures (reflecting
macroscopic pointer states created by the fractal velocity field),
which increased with distance from the solution on the aluminium
plates, as the result of a proton gradient. In this instance, decreasing
r/ increasing probability of less ordered (fractal) morphologies.

The principle is further illustrated in ice formation, in a process
analogous with our laboratory work and that by Norrduin et al.
(Noorduin et al., 2013). Ice structures range from needle crystals to
fractal snowflakes and beyond to various ice flower morphologies
and spheres (hailstones). We suggest that structure is driven in a
similar mechanism by levels of ionization and temperature, with
the most extreme conditions (e.g., plasma induced ionization dur-
ing a thunderstorm) leading to hailstones. This theory could be
easily tested by determining the influence of T and r on the
emergence of different ice morphologies.

Such a mechanism also has its equivalence in ionized gases,
which at sufficiently high levels of charge density and localized
zones of charge differential, leads to fractal patterns of discharge
(lightning). However, as r increases, we see a transition from fractal
to sheet to ball morphologies (‘ball lightning’) in a process analo-
gous with that observed in Fig. 8b.

4.2.4. Plant-scale systems
The work by Norrduin et al. (Noorduin et al., 2013), and that

reported here parallels in a very striking way, the emergence of a



Fig. 14. Morphogenesis of a flower-like structure, solution of a time-dependent Schr€odinger equation describing a growth process from a centre (l ¼ 5,m ¼ 0). The ‘petals’, ‘sepals’
and ‘stamen’ are traced along angles of maximal probability density. We note that these different structures are not built from different equations. The whole structure originates
from a single equation. By varying the force of ‘tension’we see a sequence of images simulating the opening of the flower, reproduced from Nottale and Auffray (Nottale and Auffray,
2008).
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range of structures found in the plant kingdom, but now on the
scale of cells, (typically 10 mm � 25 mm). As stated previously, this
scale is explained by a natural symmetry breaking as gravitational
forces exceed van der Waals forces. Biological systems address this
constraint on scale, with growth processes evolving via a replicative
cellular structure to generate larger scale structures.

In order to translate theory and experimental results on inor-
ganic plant-like structures to their biological equivalent, we now
consider the emergence of both mesoscale structures (in plant
cells) and more complex, multicellular structures. At the heart of
this process, we need to explain how the wide variety of structures
we observed emerging spontaneously under standard atmospheric
concentrations of CO2 in inorganic plant-like systems is more pre-
cisely (and repeatably) controlled in real plants.

4.2.4.1. Mesoscale structures. As a first step we consider mesoscale
cellulose structures that form the structural scaffold of plant cell
walls (Turner et al., 2011). In most higher level plants, cellulose
chains are extruded from a 6 � 6 arrangement of rosettes (the
cellulose synthase complex) creating short, 36 chain crystalline
units of cross section z3 e 6 nm (Peciulyte et al., 2015). The sub-
sequent assembly of these crystalline units into nano-fibrils and
their patterning in the cell wall is dictated by microtubule bundles
(Derbyshire et al., 2015), the details of which we consider later in
this section.

To date the reason for relatively short crystalline units has not
been satisfactorily explained. However, based on the principles
established in this work, it seems likely that they result from
charge-induced disruption of the crystal lattice during the extru-
sion process from the cellulose synthase complex. The result is
predicted to be a fractal assembly of crystalline units (induced by
environmental fluctuations), interspersed with amorphous cellu-
lose and hemicellulose chains, which aggregate to form
z10 e 20 nm diameter composite nano-fibres (Turner et al., 2011;
Peciulyte et al., 2015). However, it seems logical that charge density
will determine the precise internal composition of these nano-
fibres (the source of considerable debate), along with their subse-
quent assembly into larger micron scale structures in the cell. This
means that in some circumstances, it is possible that at low levels of
charge, larger crystalline structures, up to the scale of the nano-
fibril, may exist within some species of plant (or at specific posi-
tions within the plant). This level of detail may not be resolved in
averaging techniques associated with XRD or NMR analysis
(Peciulyte et al., 2015). The hypothesis is supported by observations
in aquatic plants such as Valonia (a genus of green algae in the
Valoniaceae family), where larger scale, pure crystalline cellulose
structures (z50nm cross section and >500 nm in length) have
been observed (Sugiyama et al., 1984). In this instance, if we accept
that CO2 may have some influence on charge density, then lower
levels of CO2 in aquatic environments (compared to land based
plants which are able to absorb higher levels of atmospheric CO2),
could at least partially explain lower levels of charge induced
disruption of the crystal lattice.

These principles are also valid at higher scales of assembly. For
example, the internal mesoscale fractal architecture of the struc-
tures observed in Figs. 2e5 has its analog in the fractal assembly of
cellulose nano-fibres observed in the S2 layer of a Eucalyptus
grandis cell wall illustrated in Fig. 15A. However, within the same
cell (Turner et al., 2011), we see alternative structures, such as the
nematic assembly of cellulose nanofibres (Fig. 15B) found in the S1
layer, which we would expect under conditions where charge
density drops significantly. Clearly, in these circumstances,



Fig. 15. Mesoscale structure of crystalline cellulose in the S2 layer (A) and S1 layer (B) of a Eucalyptus grandis fibre (Turner et al., 2011).

6 This concept is independently supported by recent theoretical work (Vattay
et al., 2015), suggesting that complex protein structures have evolved as a key
component of biological systems, precisely because their complex structures
exhibit macroscopic quantum properties, which play a key role in biochemical
electronic processes.
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atmospheric CO2 concentration, which remains constant, cannot be
the sole factor dictating these structures. We therefore require a
mechanism to explain how the plant genome has evolved to tightly
control levels of ionization, which can be changed in an instant,
resulting in the emergence of the diverse arrangements of nano-
fibres within a cell needed to meet the structural requirements of
the plant.

To give an idea of how structures in plants are more precisely
controlled we consider recent work on the impact of charged
macromolecules (proteins) on the emergence of different struc-
tures associated with the deposition of cellulose in secondary wall
thickening in tracheary elements of Arabidopsis thaliana
(Derbyshire et al., 2015). A typical example of the cell's rib-like
annular secondary wall thickening is illustrated in Fig. 16. The
z1.5 mm cross section discrete structures appear to be composed of
a fractal arrangement of cellulose nanostructures, which contrast
with the more uniform distribution of secondary wall structure of
cellulose nano fibres observed in Eucalyptus grandis in Fig. 15.

As discussed previously with reference to the deposition of
cellulose nanofibres, the organization of secondary wall thickening
in tracheary elements (TE's) varies according to the patterning of
microtubule bundles that guide wall deposition. Derbyshire et al.
(Derbyshire et al., 2015) has shown that whilst microtubules pro-
vide the guide for deposition of secondary cell wall thickening, the
overall patterning of these guiding microtubules is regulated by
specific microtubule-associated proteins (MAPs) and protein
complexes.

The study on individual stem cells in vitro (Derbyshire et al.,
2015) identified 605 different proteins that associate with micro-
tubules in the narrow window of time in which these cell wall
thickenings are deposited in the secondary cell wall. Through
control of gene expression, different sets of MAP's clearly influ-
enced patterning of secondary cell wall deposition. Three different
types of structures (a continuous spiral, a more inter-connected
reticulated pattern and finally a more dense packing interspersed
with a pitted structure), were directly correlated with specific
proteins (see Fig. 4aed (Derbyshire et al., 2015)). From this work it
becomes apparent that the overall charge density, associated with
specific combinations of proteins (protein complexes), controls the
assembly of cellulose into specific structures with a level of preci-
sion and repeatability that is impossible to achieve in the inorganic
plant like structures using CO2 concentration described in experi-
mental work in the current paper.

We conclude that during the transcription of DNA through RNA
to a vast array of different proteins (which are a direct reflection of
the genetic code), the subsequent assembly of protein complexes is
tightly controlled to effect subtle changes in charge density (and
therefore the ‘average’ charge) on the protein complex, which in
effect generate their own macroscopic quantum potentials.6 These
protein complexes, which attach to the microtubule, control not
only the patterning of the microtubule but also offer a very precise
mechanism for dosing the charge at the point of cellulose assembly,
thus dictating its final structure (gene expression) at the point of
interaction with the cellulose synthase complex. However, the
transcription of genes into gene products (protein and protein
complexes) represents just one aspect of the control of charge
density. To get the full picture we also need to consider the impact
of a range of different ions within the plant which can potentially
interact in the gene transcription and post-translational modifica-
tion of proteins to influence molecular assembly. An obvious
example that requires more work within the context of the labo-
ratory studies discussed in the present paper includes the potential
for generic protonation linked to CO2 concentration. This can be
expected to reveal itself in a classic genotype/environment inter-
action, an example of which we consider at the plant scale in
Section 4.2.4.3.

A further example to illustrate the importance of charge in-
cludes the phosphoryl group PO2�

3 . Phosphorylation alters the
charge on a number of protein complexes, which leads to confor-
mational change, such as a fold in the structure, resulting in a
change in their function and activity. Many of these changes can
have an indirect but important impact on cell formation. As an
example, phosphorylation of Naþ/Kþ-ATPase influences the trans-
port of sodium (Naþ) and potassium (Kþ) ions across the cell
membrane in osmoregulation, which in itself has a profound
impact on the cell's response during the growth (assembly)
process.
4.2.4.2. Cell duplication. In considering cell duplication, we find a
precedent for its description in macroscopic quantum processes. In
previous work (Nottale and Auffray, 2008; Nottale, 2011; da Rocha



Fig. 16. Tracheary elements in Aradidopsis thaliana (A) alongisde a higher magnification illustrating the detailed internal structure of an individual cell's rib-like circumferential
secondary wall thickening (B).
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and Nottale, 2003a; Nottale, 1996), an example of duplication is
given of the formation of gravitational structures from a back-
ground medium of uniform mass density r. This problem has no
classical solution, since no structure can form and grow in the
absence of large initial fluctuations. By contrast, in the present
quantum-like approach, the stationary Schr€odinger equation for an
harmonic oscillator potential (which is the gravitational potential
created locally by a medium of constant density) does have
confined stationary solutions. Solving for the Poisson equation
yields a harmonic oscillator gravitational potential
4ðrÞ ¼ 2pGrr2=3, and the motion equation becomes the
Schr€odinger equation for a particle in a 3D isotropic harmonic
oscillator potential

~DDjþ i~D
vj

vt
� p

3
Grr2j ¼ 0; (39)

with frequency.

u ¼ 2

ffiffiffiffiffiffiffiffiffi
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The stationary solutions (Nottale, 1996; Landau and Lifchitz,
1967) are expressed in terms of the Hermite polynomials H n,
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which depend on the characteristic scale
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The energy over mass ratio is also quantized as

En
m

¼ 4~D
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�
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The main quantum number n is an addition of the three inde-
pendent axial quantum numbers n ¼ nx þ ny þ nz.

Fig. 17 illustrates stationary solutions of Eq. (39). The funda-
mental level or vacuum solution (the vacuum is the state of mini-
mal energy), defined by the quantum number n ¼ 0, results in a
one-body structure with Gaussian distribution. Subsequent solu-
tions imply that in case of energy increase, the system will not
increase its size, but will jump from a single to a double structure
n ¼ 1, with no stable intermediate step between the two. As energy
levels increase further, the mode n ¼ 2 decays into two sub-modes
reflecting a chain and then a trapeze structure. Whatever the scales
in the Universe (stars, clusters of stars, galaxies, clusters of gal-
axies), the zones of formation show in a systematic way these kinds
of structures (Nottale, 2011).

Taking an alternative perspective on successive solutions of the
same time-dependent Schr€odinger equation in a 3D harmonic
oscillator potential, Fig. 18 shows how the system jumps from a
one-body to a two-body structure when the jump in energy takes
the quantized value 2~Du. Whilst this approach is particularly well
suited to describe cell duplication, it is of course far from describing
the complexity of true cellular division. However, it serves as
generic model for a spontaneous duplication process of quantized
structures, linked to energy jumps in the presence of environ-
mental fluctuations.

4.2.4.3. Multi-cell structures. Extending the conditions of replica-
tion outlined in Figs. 17 and 18, one creates a ‘tissue’ of individual
cells, which can be inserted in a growth equation, which once again
takes a Schr€odinger form. Its solution yields a new, larger scale of
organization.

In biological systems such as plants, growth is characterized by
fractal architectures, created through bifurcation processes (Fig. 6),
which replicate structures found at the molecular to nm-scale, but
now with assembly at the scale of cells, the cell playing the role of
the ‘quanta of life’. The resulting multi-scale fractal architecture
creates once again, the conditions required for the formation of a
complex velocity field bV , with varying energy levels (dependent on
local fractal geometries) across the entire plant. These conditions
lead to the emergence of quantized morphologies, with a range of
boundary conditions dictating the wide range of coherent and
fractal structures we see in living systems.

One of the main interests of the macroscopic quantum-type
approach is its capacity to make predictions about the size of the
structures, which are formed from its self-organizing properties. In
some cases, this depends only on the boundary conditions, i.e., on
the environment (in a biological context). Consider for example the
free geodesics in a limited region of space. The classical fluid
equation would yield a constant probability density (i.e., no struc-
ture), while the scale relativity description yields an equation
similar to the Schr€odinger equation for a particle in a box, which is
solved in one dimension in terms of a probability density

P ¼
����j���2 ¼ 2

a
sin2

�p n x
a

�
: (44)

The multidimensional case is a product of similar expressions
for the other coordinates. One therefore obtains, at the funda-
mental level (n ¼ 1), a peaked structure whose typical size is given



Fig. 17. Model of duplication, reproduced from Nottale (Nottale, 2011). These solutions have been simulated by distributing points according to the probability density. n ¼ 1
corresponds to the formation of binary objects (binary stars, double galaxies, binary clusters of galaxies).
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by its dispersion

sx ¼ a
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

3
� 2

s
z0:1807a (45)

and therefore depends only on the size of the box (Nottale and
Auffray, 2008).

In other cases, the size depends on the fluctuation parameter ~D.
For example, in the harmonic oscillator solutions considered in
Figs. 6 and 17-18, the dispersion of the Maxwellian probability
density distribution of the fundamental level is given by
s2 ¼ Z=mu, where u is the proper frequency of oscillations, i.e., in
the generalized case,

s ¼
ffiffiffiffi
~D
u

s
(46)

The Planck constant Z in standard quantum physics is deter-
mined by experimental observation, then used to predict outcomes
in new experiments. We contemplate the same approach in
macroscopic quantum physics, even though the value of ~D, which is
defined as the amplitude of mean fractal fluctuations described by
Eq. (7) (which is defined as a diffusion coefficient) is no longer
universal.

For a given system, one expects the appearance of many
different effects from such a macroscopic quantum-like theory,
including, interferences, quantization of energy, momentum,
angular momentum, shapes, sizes, angles, etc., so that the constant
~D can be measured from any of these effects (e.g., the energy of the
linear oscillator is En ¼ ð2nþ 1Þ~DuÞ and then taken back to predict

the size (
ffiffiffiffiffiffiffiffiffi
~D=u

q
for the linear oscillator) and other properties of the

system under consideration. In such a case, scales will be deter-
mined by the new definition of the de Broglie length

ldeB ¼ 2~D
.
v; (47)

for a linear motion of mean velocity v, or by the thermal de Broglie
length

lth ¼ 2~D
.D

v2
E1=2

; (48)

for a medium or an ensemble of particles.
Combining these ideas with the process of decoherence (Eq.

(23)), we conclude that diffusion processes play two key roles in
macroscopic quantum processes. In the first case, D and r collec-
tively drive fractal structures in a scale dependent process, with
molecular, nm and cell scale fractal structures determining the
value of bV and the emergent MQP

Q ¼ �2~D
2D

ffiffiffi
r

pffiffiffi
r

p : (49)

The subsequent emergence of ordered structures are in turn
influenced by the external diffusive force, which competes with
internal macroscopic quantum forces in the decoherence process.



Fig. 18. Scale relativity model of cell duplication, reproduced from Auffray and Nottale (Nottale and Auffray, 2008). The successive figures give the isovalues of the density of
probability for 16 time steps. The first and last steps (1,n ¼ 0 and 16,n ¼ 1) are solutions of the stationary (time-independent) Schr€odinger equation, whilst intermediate steps are
exact solutions of the time-dependent Schr€odinger equation and therefore reflect only transient structures. The process is similar to bifurcation (Fig. 6), where the previous
structures remain and add to themselves along a z-axis instead of disappearing as in cell duplication.
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When considering quantized morphologies, if internal forces
(Eq. (22)) are insufficient to maintain a coherent structure against
environmental perturbation, we see decoherence associated with
collapse of the complex velocity field bV to its pointer states. This is
reflected at macroscopic scales in the emergence of fractal struc-
tures, e.g., a fern (a fractal leaf), which still exhibits long range or-
der, its DF being determined by the relative strength of the residual
field, a concept not incompatible with Pietak (Pietak, 2011), who
suggested that electromagnetic fields govern leaf structure.

Beyond a critical point in the decline of charge density, charge
will be insufficient to support the emergence of a long range fractal
architecture, i.e., long range fluctuations ~D disappear, along with
the complex velocity field bV . This step equates to full macroscopic
quantum decoherence of the field. However, in most instances,
charge is sufficient to disrupt the formation of a crystal lattice,
leading to the emergence of disordered tumour-like structures,
where external diffusive forces (Eq. (21)) dictate morphology.

The dual role associated with diffusive type processes offers a
new fundamental insight into the interplay between thermody-
namics and macroscopic quantum processes and their role in
defining ordered structure at a range of different scales.

reproduced from Nakamasu et al. (Nakamasu et al., 2014).
Based on the experimental work we have presented, it seems

clear that changes in charge density and temperature, alongside
other environmental conditions, have a critical role to play in the
emergence of plant structure. As suggested for mesoscale assem-
blies of cellulose nano-fibres in the cell wall (Section 4.2.4.1), within
an evolutionary context, evidence suggests that genes encode
mechanisms to control and maintain levels of charge density
through transcription of the genetic code into proteins and protein
complexes interacting with external sources of charge (CO2 based
generic protonation, phosphorylation etc). The result is a range of
macroscopic quantum processes leading to the emergence of the
wide range of structures (e.g., cell, stems, branches, leaves, buds,
flowers, seeds, pollen, fruits, pods) that we find in plants.

Genetic control means that many of these processes are to an
extent independent of environment. This is supported by
numerous examples of plants successfully introduced to climates
different from those in which they evolved. Under most circum-
stances we do not see a radical change in plant morphology within
a new environment. However, a number of plants are able to adapt
their morphology in a significant way, in response to a changing
environment (phenotype plasticity), suggesting that the genome to
metabalome translation process is more open to environmental
influences. In a recent study by Nakamasu et al. (Nakamasu et al.,
2014), changes in the morphology of leaves of North American
Lake cress (Rorippa aquatica) with temperature (heterophylly) were
reported. Fig. 19A illustrates a coherent (simple) leaf morphology in
a plant grown at 30 �C. This contrasts with Fig. 19B illustrating a
branched (fractal) leaf grown at 20 �C. These structures have their
equivalence in Fig. 3 and the fractal structure observed in Fig. 1f.
Further work on this species (Nakayama et al., 2014) shows an even
wider variation in fractal dimension over the temperature range
from 15 �C to 30 �C, which is expressed as a progressive morpho-
genic gradient, which we speculate may in part (directly or indi-
rectly) be related to reduced levels of charge density as CO2
concentration declines with temperature. This temperature/
morphology relationship was observed in both terrestrial and



Fig. 19. Morphology of Rorippa aquatica leaves at 30 �C (A) and at 20 �C (B).

7 which we have shown shares many features with standard QM.
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submerged plants. However, for the same temperature, submerged
plants expressed a far higher level of branching and fractal
dimension. A phenomenon which we suggest could also be
attributable to lower levels of CO2 availability in the aquatic
environment.

Summarizing key findings from this second study (Nakayama
et al., 2014), it was found that the concentration of endogenous
gibberellin (GA) significantly increased as temperature increased
from 20 �C to 25 �C. The subsequent application of GA and uni-
conazole (a GA biosynthesis inhibitor) confirmed that GA leads to
simplified leaf forms at 20 �C and 25 �C compared with a control,
whilst uniconazole treatment increased leaf complexity. The fact
that higher concentrations of a charged molecule (GA) are pro-
duced at higher temperatures, sits well with our theory that as
charge density increases, we expect a transition from structures
with high fractal dimension to increased levels of spatial coherence.

Since GA biosynthesis is regulated by KNOX1 genes (Nakayama
et al., 2014), it was concluded that the KNOX-GA module is a key
factor in the development of leaf morphology in R. aquatica.
However, the overall picture is more complex. A global analysis of
the transcriptome linked the expression of 630 genes with
dissected (fractal) leaves and 471 genes with simple leaves.

The top 200 genes upregulated in the dissected leaf condition
largely overlapped with genes upregulated in response to cold
treatment, whilst those upregulated in the simple leaf condition
overlapped with genes that are downregulated in response to cold
treatment. To this complexity we can add the possible influence of
CO2 availability. As suggested with respect to the work reported by
Derbyshire et al. (Derbyshire et al., 2015), there is a strong possi-
bility that protons released through CO2 dissolution can affect
overall charge density during gene transcription and/or post-
translational modification of proteins to influence molecular as-
sembly. Such an outcome would correlate with the effects of GA
concentration, expressed through the KNOX-GA module and the
hundreds of additional genes playing a role in the final expression
of leaf morphology.

On a different level, the genes upregulated in the dissected leaf
condition also overlapped with those that respond to changes in
light intensity suggesting a further potential influence on leaf
morphology. This was confirmed in growth experiments at various
light intensities at constant temperature (20 �C). There was a
striking increase in leaf fractal dimension with increasing light in-
tensity. This fits well with our hypothesis that we are dealing with a
macroscopic quantum system, with increasing fractal dimension
reflecting photon induced decoherence as light intensity increases.

The work by Nakayama et al. (Nakayama et al., 2014) represents
new insights into the genetic control of leaf morphology in
R. aquatica. However, it leaves open the fundamental mechanisms
at work in defining structure. The concept of macroscopic quantum
processes dictated by the genome, through translation into the
proteome and its interaction with the environment, offers new
insight into a global mechanism bywhich the genetic code is finally
expressed in the form of plant structure.

4.3. Summing up

Taking into account the effects of scale described in the theory of
scale relativity, this paper addresses a key question related to the
debate around irreversible laws linked to determinism and prob-
abilistic descriptions in physics. Within this new theoretical
framework, the laws of physics can jump from reversible to irre-
versible behaviour and reciprocally, dependent on the scale. For
example, at the very smallest scales in naturewe see a fundamental
irreversibility under the reflection jdtj/� jdtj, which is at the
origin of the complex number representation of quantum me-
chanics (see Section 2.2). When these two real irreversible pro-
cesses (which can be described by real path integrals) are combined
into a complex one (a complex path integral), the new complex
description (leading to the wave function) becomes reversible.
Decoherence of the wave packet introduces a new irreversibility in
physics. Complete decoherence leads to classical physics, which is
at first reversible. However, these classical laws, when considered
on long time scales (larger than the Lyapunov timescale), dictated
by the second law of thermodynamics, become chaotic, i.e. un-
predictable and irreversible again. One of the main propositions of
scale relativity (Nottale, 1993, 2011), tested in the present paper,
has been that on even longer time scales (initially predicted at >10
to 20 Lyapunov timescales), this basic irreversibility found at the
scale of development of chaos becomes the seed for a new
macroscopic quantum theory,7 whose equations are again revers-
ible in terms of complex wave functions.

As outlined in detail in the paper, the conditions required for the
emergence of such a macroscopic quantum system are very spe-
cific. Key amongst these is that charge density is sufficient to
generate a charge induced interconnecting geometric network
(along the lines illustrated in Fig. 7), which at a critical percolation
threshold leads to the emergence of a macroscopic quantum po-
tential. In theory this process can repeat itself over a very broad
range of different scales. This principle is exemplified in the
emergence of the cell, which as the ‘quanta of life’ then repeats the
process of reversibility/irreversibility, leading to the emergence of
ordered multicellular structures. However, the principle is also
applicable at smaller scales. Depending on specific conditions, a
very diverse range of structures at different scales can emerge
within a single cell. Examples range from protein complexes
(Vattay et al., 2015), nano-structures (z5e1000 nm in Figs. 10B, 15
and 16B), to a multitude of cell organelles.

In a generic process analogous to that suggested by Vattay et al.
(Vattay et al., 2015) for proteins, we propose that the emergence of
each of the many different types of potential structures is the result
of a unique set of physical conditions dictated by both external and
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local conditions (defined by the cells genetic code), which have
been selected for and refined during the evolutionary process.

Following these principles, it should be possible to model each
of these different structures with a macroscopic Schr€odinger
equation. The challenge in achieving this is to correctly identify the
detailed set of physical conditions leading to the emergence of each
structure. However, such an approach may prove extremely diffi-
cult in anything but the simplest biological processes. An alterna-
tive starting point is to vary the external field/limiting conditions
and or symmetries (the three elements which determine the so-
lutions of the Schrodinger equation) and then see the morphology
changing accordingly.8 This approach has the potential to offer
completely new coarse-grained, testable insights into the condi-
tions that lead to the structures that emerge, generating signposts
to support the process of decoding the complex role of the genome,
transcriptome, proteome and metabalome in establishing these
initial conditions.

We stress the point that above or below a critical level of charge
density, the emergence of a macroscopic quantum system is not a
foregone conclusion. As shown in Fig. 8a, very low levels of charge
density lead to crystalline structures. As levels of charge increase
beyond this point we see the emergence of a range of charge
induced fractal networks (including tumors) which remain disor-
dered and below the threshold for quantum criticality. By contrast,
at very high levels of charge density, molecular repulsion leads to
breakdown of structures and molecular disorder. Examples to
illustrate this process include dissolution (e.g. acid hydrolysis) or
vaporization (e.g. plasma ashing9).

As stated at the outset of the paper (Section 1), whilst the work
presented here has focused specifically on structure in plants as a
means to test and validate the basic principles we have described, it
is clear that they are not exclusive to plants, but generally appli-
cable to all living and non living systems. This is exemplified by the
reference to work on planetary nebulae (da Rocha and Nottale,
2003a; da Rocha and Nottale, 2003b) in Section 4.2.3 as well as
many other astrophysical phenomena (Nottale, 2011) where the
transition from irreversibility (chaos) to reversibility (order) re-
peats itself.

This point highlights a far reaching implication of the theory of
scale relativity. There is a tendency to consider the cell as a rela-
tively small object. However, as noted in earlier work (Nottale,
2011), when taking the log of all scales in nature (the Planck scale
10�33 cm to the Cosmological scale 1028 cm) then the cell, at
3 � 10�3 cm actually sits in the middle of this range of scales.
Within this context, the cell can be regarded as a (relatively) vast
object in space, putting the analogies with astrophysical phenom-
ena into a new perspective.

Within this much broader context, we emphasize the fact that,
although the new macroscopic quantum theory shares many
structures and methods with standard QM, it is NOT “Quantum
Mechanics”, since it is not based on the universal Planck constant Z,
but on a parameter that may vary from one system to the other. For
example, in the application to astrophysics, this parameter comes
under the equivalence principle (implying that the inertial mass
disappears from the equations). This endows astrophysical
macroscopic quantum theory with specific characters different
from standard QM (e.g., it is not energy E ormomentum pwhich are
quantized, but E=m ¼ v2 and p=m ¼ v, which involves a
8 A flower-like structure such as Fig. 14 represents one of the simplest solutions
(free case with no external field).

9 we note however that ionized gases can at an appropriate scale and charge
density lead to a larger scale macroscopic quantum state and the emergence of long
range order.
quantization of velocity itself). In a similar way, wemay expect that
the application of this macroscopic quantum theory to living sys-
tems will endow it with specific biological characters, to be studied
in more detail in future works.

On a final point, the findings outlined in this work have
important implications, not just for our understanding of the
emergence of structure, but also examples of collective behaviour
in condensed matter such as coherent random lasing, high tem-
perature superconductivity and photosynthesis, whose detailed
mechanisms have to date, proved challenging to elucidate. Within
this context, we suggest that the work presented here offers a
number of signposts and tools to assist future workers in decon-
structing and understanding some of thewide range of phenomena
(structures and functions) we have identified in the paper. We also
suggest that the new insights we have outlined have the potential
to play an important role in supporting the development of new
materials and harness the potential applicability of macroscopic
quantum phenomena in a range of different technologies.

5. Conclusions

We have developed an evidence based theory for the emergence
of a range of structures associated with plants (e.g. crystals, tumors,
ferns, fungi, stems, seeds, flowers pods, fruits, cells) through
growth processes dictated by the presence of a fractal network of
charges. This leads to a charge induced geometric landscape, which
dictates macroscopic fluctuations ð~DÞ and the emergence of
macroscopic quantum potentials (QN and QPOL), which in turn drive
macroscopic quantum processes and the emergence of different
types of structure.

At a range of plant scales, the strength of the dominant MQP (Eq.
(30)) and associated forces are a function of charge density r and
the velocity field bV of a fluid in potential motion, described in terms
of a macroscopic complex wave function j ¼ ffiffiffi

r
p � eiA=Z. The

strength of the MQP determines the type of structure, e.g. dendritic
(fern-like) structures or spherical (cell-like) structures. Whilst
spherical structures emerge at the highest levels of charge, den-
dritic structures signify the start of a macroscopic decoherence
process to the roots (pointer states) of a charge induced fractal
network ‘the field’, which as we shall show in more detail future
work, has its geometric equivalence in standard QM.

The macroscopic quantum processes we observe in plants take
the form of a two component [coherent (boson)-classical
(fermion)] system, which has its equivalence in CRL and HTSC
(Turner and Nottale, 2015). Only bosons remain coherent at
macroscopic scales. The assembly of molecules (fermions) into
plants operates within the framework of macroscopic fluctuations
within a coherent bosonic field bV , acting as a structuring force in
competition with exterior potentials f (HE). Whilst the system is
only partially coherent, many of the phenomena associated with
standard quantum theory are recovered, including quantization,
non-dissipation, self-organization, confinement, structuration
conditioned by the environment, environmental fluctuations
leading to macroscopic quantum decoherence and evolutionary
time described by the time dependent Schr€odinger equation, which
describesmodels of bifurcation and duplication. This work provides
a strong case for the existence of a geometrically derived
quintessence-like behaviour (Witten, 2002), with macroscopic
quantum potentials and associated forces having their equivalence
in standard QM and gravitational forces in general relativity.

As levels of charge decrease to a point where they are insuffi-
cient to form a MQP, we see the disappearance of macroscopic
quantum behaviour. This is reflected in the first instance in struc-
tures driven by pure dissipative processes, resulting in tumour-like
structures. At yet lower levels of charge, we see the elimination of
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charge-induced disruption during molecular assembly, leading to
the emergence of nematic order and crystalline structures.

In conclusion, the presence or absence of macroscopic quantum
forces is dictated by charge and a combination of dissipative and
quantum systems. At one level, dissipative systems (environmental
fluctuations) are critical to molecular assembly and the emergence
of a fractal network of charges, which drive the emergence of a
MQP and ordered structures. At the same time, the emergent
structure is dependent on the relative contributions of charge
density and competing environmental fluctuations. These two
processes are therefore inextricably linked through both synergistic
and competing relationships, dictating molecular assembly into
different structures.

When considering assembly mechanisms within real plants, a
brief case study (Derbyshire et al., 2015) offers important insights,
indicating that structure is expressed at a wide range of points and
scales within the plant through transcription of genetic code into
charged macromolecules (proteins and protein complexes). A sec-
ond set of case studies (Nakamasu et al., 2014; Nakayama et al.,
2014) suggests that external sources of charge such as atmo-
spheric CO2 may also interact with the genetically coded array of
proteins to impact on final structure.

As mentioned in Section 4.2.2, evidence for macroscopic quan-
tum coherence in plants has been reported in photosynthetic sys-
tems (Engel et al., 2007; Collini et al., 2010). If the theory presented
in this paper is correct, then these types of observations represent
the tip of the iceberg. A key challenge for future work lies in un-
derstanding in more detail how genomic, proteomic, tran-
scriptomic, and metabolomic information translates into charge
density distribution and themechanisms bywhich the genes finally
express themselves in plant structure at different scales within the
organism.

As stated at the outset, the aim of this work was to test and
validate some of the basic physical principles and theories pro-
posed in earlier work (Auffray and Nottale, 2008; Nottale and
Auffray, 2008), using a basic set of case studies focused on plants.
We suggest that the new experimental evidence and theory pro-
posed in the present paper contributes an important first step in
meeting this objective, offering a more detailed insight into the
mechanisms at work and establishing some basic principles that
are more generally applicable in all living systems.

At a broader level, this work offers new insight into evolutionary
processes in structural biology, with selection at any point in time,
beingmade from awide range of spontaneously emerging potential
structures (dependent on conditions), which offer advantage for a
specific organism. This is valid for both the emergence of structures
from a prebiotic medium and the wide range of different plant
structures we see today.

As a final point, it should be clear from this work that biological
processes, structures and systems are not in any way privileged.
They can rather be viewed as an extremely large set of very com-
plex, interacting systems, which explains the slow progress in
deconstructing these processes to their individual component
mechanisms.

6. Future work

In the present work we have given just a few examples of
possible emergent structures using CO2 as the source of charge
density. It represents only a first step in developing an under-
standing the vast and diverse range of processes and mechanisms
at work in living systems. Future work will focus on more detailed
theory, modelling and controlled experimental studies to deter-
mine the impact of atomic/molecular structure (including bio-
polymers), levels of charge, pH and temperature on emerging
structures. As part of this process wewill consider the possibility to
mimic biological systems through the use of protein complexes to
more precisely control the emergence of specific structures.

The objective - to develop an improved understanding of how to
manipulate molecular and nm-scale particles into different struc-
tures and the development of new materials from first principles.
Examples include:

� the development of tuneable fractal systems for a range of
materials in applications, which require macroscopic quantum
coherence, including HTSC, CRL and quantum computing sys-
tems. For more detailed proposals on HTSC see (Turner and
Nottale).

� the development of cell duplication processes leading to a new
multi-scale ‘cellular’ approach to the development of materials
with different structures, which mimic biological systems.

Work should also include studies on emergence of living
structures from prebiotic media. Success in this area may improve
our understanding of processes involved in the origins of life.

At a different level, multidisciplinary work to understand
evolutionary processes in established plants could also prove
beneficial. Working within the limits of biological systems, future
work should consider environmental impacts on structure through
more extensive trials in heterophylic plants, including studies to
independently vary temperature and levels of CO2 concentration
under controlled conditions.

A multidisciplinary approach is also required to target a more
detailed and fundamental understanding of the role of the genome
in setting the internal conditions within plants (in the first
instance) that control structure at different scales. This could have
wide ranging applications in evolutionary biology and plant
breeding, including an improved understanding of both past and
future adaptive responses. As an example, success in this area could
contribute to our understanding of the impact of past and future
climate change (temperature and CO2 concentration) on different
species and where appropriate (e.g. key agricultural species), sup-
port the identification of genetic variants most adaptable to
different environments including future climate change.

7. Supplementary material

The supplementary material contained in this section is pro-
vided as a quick reference for key elements of the theory. For more
detailed information the reader is referred to references contained
in the text. For the most up to date and in depth analysis we refer
the reader to reference (Nottale, 2011).

7.1. From Newton to the Schr€odinger equation

In this section we outline the derivation of the Schr€odinger
equation through a process analogous with general relativitywhere
after expansion of the covariant derivative, the free-form motion
equations can be transformed into a Newtonian equation inwhich a
generalized force emerges, of which the Newton gravitational force
is an approximation. Following the same principle, the covariance
induced by scale effects leads to a transformation of the equation of
motion, which, as we demonstrate through a number of steps,
becomes after integration, the Schr€odinger equation. In the con-
struction of this approach we note that whilst equations take a
classical form, this form is applied to non differentiable geometry,
so that the result is no longer classical.

7.1.1. Momentum
Due to the complex nature of the velocity field bV (Eq. (8)), the
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classic equation p ¼ mv, can be generalized to its complex repre-
sentation (Nottale, 2011).

bP ¼ mbV ; (50)

so that the complex velocity field bV is potential (irrotational), given
by the gradient of the complex action,

bV ¼ VbS
m

: (51)

We now introduce a complex function j identifiable with a
wave function or state function, which is another expression for the
complex action bS,
j ¼ ei

bS=S0 : (52)

The factor S0 has the dimension of an action, i.e. of an angular
momentum with S0 ¼ Z in the case of standard QM, where Z is a
geometric property of the fractal space, defined through the fractal
fluctuations as Z ¼ 2m~D ¼ mhdx2i=dt.

The next step consists of making a change of variable in which
one connects the complex velocity field Eq. (51), to a wave function,
j where ln j plays the role of a velocity potential according to the
relation

bV ¼ �i
S0
m
Vðln jÞ: (53)

The complexmomentum Eq. (50)may nowbewritten under the
form

bP ¼ �iS0Vðln jÞ; (54)

i.e.

bPj ¼ �iS0Vj: (55)

In the case of standard QM ðS0 ¼ ZÞ, this relation readsbPj ¼ �i Z Vj, i.e. it is a derivation of the principle of correspon-
dence for momentum, p/� i Z V, where the real part of the
complex momentum bP is, in the classical limit, the classical mo-
mentum p. The ‘correspondence’ is therefore understood as be-
tween the real part of a complex quantity and an operator acting on
the function j. However, thanks to the introduction of the complex
momentum of the geodesic fluid, it is no longer a mere corre-
spondence, it has become a genuine equality. The same follows for
angular momentum L ¼ rp, which can also be generalized to the
complex representation

bLj ¼ �iS0r � Vj; (56)

so that we recover, in the standard quantum case S0 ¼ Z, the cor-
respondence principle for angular momentum, which again
emerges as an equality.
7.1.2. Remarkable identity
We nowwrite the fundamental equation of dynamics Eq. (14) in

terms of the new quantity j.

iS0
bd
dt

ðVln jÞ ¼ Vf: (57)

We note that bd and V do not commute. However, as we shall see
in what follows bdðVln jÞ=dt, is a gradient in the general case.

Replacing bd=dt by its expression, given by Eq. (13), yields
Vf ¼ iS0

�
v

vt
þ bV $V� i~DD

�
ðVln jÞ; (58)

and replacing once again bV by its expression in Eq. (53), we obtain

Vf ¼ iS0

�
v

vt
Vln j� i

	
S0
m

ðVln j$VÞðVln jÞ þ ~DDðVln jÞ

�

:

(59)

Consider now the identity (Nottale, 1993).

ðVln f Þ2 þ Dln f ¼ Df
f
; (60)

which proceeds from the following tensorial derivation.

vmv
mln f þ vmln f vmln f ¼ vm

vmf
f

þ vmf
f

vmf
f

¼ f vmvmf � vmf vmf

f 2
þ vmf vmf

f 2

¼ vmv
mf
f

:

(61)

When we apply this identity to j and take its gradient, we
obtain

V

�
Dj
j

�
¼ V

h
ðVln jÞ2 þ Dln j

i
: (62)

The second term on the right-hand side of this expression can be
transformed, using the fact that V and D commute, i.e.,

VD ¼ DV: (63)

The first term can also be transformed thanks to another
identity,

VðVf Þ2 ¼ 2ðVf $VÞðVf Þ; (64)

that we apply to f ¼ lnj. We finally obtain (Nottale, 1993).

V

�
Dj
j

�
¼ 2ðVln j$VÞðVln jÞ þ DðVln jÞ: (65)

This identity can be still generalized thanks to the fact that j
appears only through its logarithm in the right-hand side of the
above equation. By replacing j with ja, we obtain the general
remarkable identity (Nottale, 2008).

1
a
V

�
Dja

ja

�
¼ 2aðVln j$VÞðVln jÞ þ DðVln jÞ: (66)
7.1.3. The Schr€odinger equation
We recognize in the right-hand side of Eq. (66) the two terms of

Eq. (59), which were respectively in factor of S0 and ~D. Therefore, by
writing the above remarkable identity in the case.

a ¼ S0
2m~D

; (67)

the whole motion equation becomes a gradient,
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Vf ¼ 2m~D
	
i
v

vt
Vlnja þ ~DV

�
Dja

ja

�

; (68)

and it can therefore be generally integrated, in terms of the new
function.

ja ¼
�
ei
bS=S0�a ¼ ei

bS=2m~D: (69)

which is more general than in standard QM, for which
S0 ¼ Z ¼ 2m~D. Eq. (67) is actually a generalization of the Compton
relation. This means that the function j becomes a wave function
only provided it comes with a Compton-de Broglie relation, a result
which is naturally achieved here. Without this relation, the equa-
tion of motion would remain of third order, with no general prime
integral.

The simplification brought by this relation means that several
complicated terms are compacted into a simple one and that the
final remaining term is a gradient, which means that the funda-
mental equation of dynamics can now be integrated in a universal
way. The function j in Eq. (52) is therefore finally defined as.

j ¼ ei
bS=2m~D; (70)

which is a solution of the fundamental equation of dynamics, Eq.
(14), which now takes the form.

bd
dt
bV ¼ �2~DV

�
i
v

vt
ln jþ ~D

Dj
j

�
¼ �Vf

m
: (71)

Using the fact that dlnj ¼ dj=j, the full equation becomes a
gradient,

V

"
f

m
� 2~DV

 
ivj=vt þ ~DDj

j

!#
¼ 0: (72)

Integrating this equation finally yields a generalized
Schr€odinger equation, which is Eq. (15) in the main text.

~D
2
Djþ i~D

v

vt
j� f

2m
j ¼ 0; (73)

7.2. Fluid representation with a macroscopic quantum potential

In this section we demonstrate the fundamental meaning of the
wave function as a wave of probability, and that the geodesic
equation can take not only a Schr€odinger form, but also a fluid
dynamics form with an added quantum potential. We begin by
writing the wave function under the form j ¼

ffiffiffi
P

p
� eiA=Z, decom-

posing it in terms of a phase, defined as a dimensioned action A and
a modulus P ¼

���j���2, which gives the number density of virtual
geodesics (Nottale, 2011; Nottale, 2007). This function becomes
naturally a density of probability. The function j, being a solution of
the Schr€odinger equation and subjected to the Born postulate and
to the Compton relation, therefore owns most of the properties of a
wave function.

The complex velocity field bV Eq. (8) can be expressed in terms of
the classical (real) part of the velocity field V and of the number
density of geodesics PN, which as we have shown is equivalent to a
probability density P where.

bV ¼ V � i~DVln P: (74)

The quantum covariant derivative operator thus reads.
bd
vt

¼ v

vt
þ V$V� i~D ðVln P$Vþ DÞ: (75)

When we introduce an exterior scalar potential f, the funda-
mental equation of dynamics becomes.�
v

vt
þ V$V� i~DðVln P$Vþ DÞ

��
V � i~DVln P

�
¼ �Vf

m
: (76)

The imaginary part of this equation,

~D
	
ðVln P:Vþ DÞV þ

�
v

vt
þ V$V

�
Vln P



¼ 0; (77)

takes, after some calculations, the following form.

V

	
1
P

�
vP
vt

þ divðPVÞ
�


¼ 0; (78)

which can finally be integrated in terms of a continuity equation:

vP
vt

þ divðPVÞ ¼ 0: (79)

The real part,�
v

vt
þ V$V

�
V ¼ �Vf

m
þ ~D

2ðVln P$Vþ DÞVln P; (80)

takes the form of a Euler equation,

m
�
v

vt
þ V$V

�
V ¼ �Vfþ 2m~D

2
V

 
D
ffiffiffi
P

pffiffiffi
P

p
!
; (81)

which describes a fluid subjected to an additional quantum po-
tential Q that depends on the probability density P.

Q ¼ �2m~D
2D

ffiffiffi
P

pffiffiffi
P

p : (82)

This approach is similar to the Madelung transformation
(Madelung, 1927), but in a way that all its various elements make
sense from first principles, instead of being postulated. Since the
Schr€odinger equation is obtained as a reformulation of the geodesic
equation, it is possible to go directly from the covariant equation of
dynamics Eq. (14) to the fluid mechanics equations without
defining the wave function or passing through the Schr€odinger
equation.
7.3. A fluid representation of a diffusive system

Consider a classical diffusion process described by a Fokker-
Planck equation,

vP
vt

þ divðPvÞ ¼ DDP; (83)

where D is the diffusion coefficient, P the probability density dis-
tribution of the particles and v(x,t) is their mean velocity.

When there is no global motion of the diffusing fluid or particles
(v¼ 0), the Fokker-Planck equation is reduced to the usual diffusion
equation for the probability P,

vP
vt

¼ DDP: (84)

Conversely, when the diffusion coefficient vanishes, the Fokker-
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Planck equation is reduced to the continuity equation,

vP
vt

þ divðPvÞ ¼ 0: (85)

We now make a change of variable, where in the general case, v
and D are a priori non vanishing,

V ¼ v� DVln P: (86)

We first prove that the new velocity field V(x,y,z,t) is a solution of
the standard continuity equation. Taking the Fokker-Planck equa-
tion and replacing V by its above expression, we find.

vP
vt

þ divðPVÞ ¼ fDDP � divðPvÞg þ divðPvÞ � D divðPVln PÞ:
(87)

Finally the various terms cancel each other and we obtain the
continuity equation for the velocity field V,

vP
vt

þ divðPVÞ ¼ 0: (88)

Therefore the diffusion term has been absorbed in the re-
definition of the velocity field.

We now consider a fluid-like description of the diffusing motion
and determine the form of the Euler equation for the velocity field
V. As a first step we consider the case of vanishing mean velocity.

Let us calculate the total time derivative of the velocity field V,
first in the simplified case v ¼ 0.

d
dt

V ¼
�
v

vt
þ V$V

�
V ¼ �D

v

vt
Vln P þ D2ðVln P:VÞVln P: (89)

Since vVln P=vt ¼ Vvln P=vt ¼ VðP�1vP=vtÞ, we can make use of
the diffusion equation so that we obtain.�
v

vt
þ V$V

�
V ¼ �D2

	
V

�
DP
P

�
� ðVln P$VÞVln P



: (90)

In order to write this expression in amore compact form, we use
the fundamental remarkable identity Eq. (69), where j ¼ R

1
a
V

�
DRa

Ra

�
¼ DðVln RÞ þ 2aðVln R$VÞðVln RÞ: (91)

By writing this remarkable identity for R ¼ P and a ¼ 1, we can
replace VðDP=PÞ by DðVln PÞ þ 2ðVln P$VÞVln P, so that Eq. (90)
becomes�
v

vt
þ V$V

�
V ¼ �D2fDðVln PÞ þ ðVln P$VÞVln Pg: (92)

The right-hand side of this equation comes again under the
identity Eq. (90), but now for a ¼ 1/2. Therefore we finally obtain
the following form for the Euler equation of the velocity field V,
which describes a diffusive system:�
v

vt
þ V$V

�
V ¼ �2D2V

 
D
ffiffiffi
P

pffiffiffi
P

p
!
: (93)
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