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We describe and analyze a parametrization of fractal “curves” (i.e., fractal of topological
dimension 1). The nondifferentiability of fractals and their infinite length forbid a complete
description based on usual real numbers. We show that using nonstandard analysis it is possible to
solve this problem: A class of nonstandard curves (whose standard part is the usual fractal) is
defined so that a eurvilinear coordinate along the fractal can be built, this being the first step
towards the possible definition and study of a fractal space. We mention fields of physics to which

such a formalism could be applied in the future.

PACS numbers: 02.40. + m

I. INTRODUCTION

The concept of fractals, introduced by B. Mandel-
brot,* applies to any curve, object, or set “whose form is
extremely irregular and/or fragmented at all scales.” More
precisely, let D be the fractal dimension (e.g., the Hausdorff—
Besicovitch dimension}; a fractal is defined™® as a set for
which D is greater than the topological dimension D,

Nowadays this concept is increasingly considered in
physics for several reasons:

{i) Fractal curves are functions which are continuous
but nowhere differentiable; this property has already been
observed for some natural phenomena, such as particle tra-
jectories in quantum mechanics.*’

(i1) The length of a fractal curve is dependent on the
resolution with which it is measured and diverges when the
resolution tends to be infinite.

(iti) A fractal dimension can be any real number, so this
concept may apply to fields of physics such as critical behav-
tor phenomena, where noninteger dimension has become a
necessity.

Mandelbrot'~ pointed out many examples of the con-
tribution fractals can bring to the description of naturat phe-
nomena such as the length of a coastline, the distribution of
matter in the universe, turbulence, moon craters... . Further-
more, the concept of Haussdorff dimension has been applied
to QCD jets, gauge theories,” critical behavior,® Aiuctu-
ations of the early universe,” or quantum-mechanical paths.®

However, in most cases, the authors limit themselves to
the calculation of a fractal dimension or use fractals in a
purely descriptive way {but see Le Mehauté et 2.}, Be-
cause of the wide domain where phenomena seem to exhibit
a fractal behavior, one is entitled to wish that a more thor-
ough use of this concept would be possible, e.g., by buildinga
formalism based on fractals and suitable for physics. In fact,
no explicit calculation is presently possible on the fractal
itself (i.e., the limit objéct instead of one of its approxima-
tions), It is the aim of this paper to show that nonstandard
analysis, as built up by Robinson'? is well adapted to such
calculations.

In this paper, we first parametrize fractal “curves” (i.e.,
fractals of topological dimension 1) in the Cesaro'>? way
{Sec. I1). Then some paradoxical properties of fractals are
evidenced and are clarified by the use of nonstandard analy-
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sis (Sec. IIT) as a way to build intrinsic curvilinear coordi-
nates along a fractal curve (Sec. IV). This is hopefully a first
step towards the definition of a fractal space by its own,
while so far fractals have been considered as subsets of an
integer-dimensional space.

Il. PARAMETRIC EQUATION OF A FRACTAL CURVE

Consider a generalized von Koch curve in the R? {or G
plane. It can be built from an initial curve F 1 made up of p
segments of equal length 1/g which connect the origin to the
point [0,1] {see Fig. 1). Let @; ;. ; be the polar angle of the jth
segment and Z, = X; +i¥; = (1/g) Z|_}, ¢** the complex
coordinate of a breaking point P;. Two conditions hold
between these data:

Pl | .

Y et=q Z, , —Z=—¢" 2.1

k=0 q
A curve F, is obtained by substituting each segment of F, by
F, itself, scaled at its length 1/, as illustrated in Fig. 2. The
resulting curve of an infinite sequence of these steps (substi-
tution of each segment of F, by ¢~ * F, giving F, . 1)is the
fractal F.

As indicated by Mandelbrot? in the case of the Peano
curve, Fcan be parametrized by a real number x & [0,1] de-
veloped in the counting base p in the form (see Fig. 2):

x=0xp, =Y xp % (2.2)
|

The fractal will apparently be completely defined when the
complex coordinate Z (x) of the point on F parametrized byx
is known. Z (x) can be easily obtained, thanks to the above
building process of F, under the form

Y

-n

X

1
FIG. 1. Building of the basic structure of a fractal curve.
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FIG. 2. Parametrization of a fractal curve.

Zixy=2Z, +g e [sz +q_’ej“"=[Zx] + =11

2.3)
so that we finally obtain
Z(x):q i Zxk eiZ:J] @, q—k. (2‘4,
k=1
If one defines new variables p;, 6;, and ¢, by writing
) J—1
Z;. = q‘lpje el’ ?xj = ij + IZI mxl_, (2.5)

another interesting form for the parametric equations of a
fractal can be given

Xix)= 3 p., cosl@, g5
=t (2.6)

Yixj= 3 ps, sinip.le "
k=1

Itis well known that, with its dimension lying between 1
and 2, a fractal curve within a plane is intermediate between
a line and a surface. Indeed, while it may be buili by adding
segments it may also be obtained by deleting surfaces.™ This
construction allows dealing with the problem of multiple
points. Given an initial curve F;, consider a polygon P, of
surface .5, with one of its diagonals being the segment {0,1]
and in which F, is included. Then build around each segment
of F, a g-reduced scale version of P,: We obtain a figure £,
{for example of such a construction, see Fig. 3). An obviously
sufficient condition for the absence of multiple points is that
all polygons of P, are disjointed, since this will remain true in
the figures Py, Py, ..., P, ... . Let 8w, = @, — w,;_, be the an-
gle between two segments in F| (see Fig. 1). Then for two
adjacent segments, the above condition leads to (angles a, 5,
¥ are defined in Fig. 3)

at +B <7 —bw;, a +B7 <7+ dw, (2.7)
so that we get for all values of j the sufficient conditions

— T <, <y, (2.8)
Let us now illustrate the nonstandard character of fractals,

answering (by the negative} the question: Do Egs. (2.2) and
(2.6) characterize all properties of F in the R” plane?

FIG. 3. Building of a fractal by delet-
ing surfaces.
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We first recall that, with its fractal dimension*?
D = log p/log ¢, the length of the fractal is infinite and its
surface vanishes since the F, lengih and surface are

L)L o=p/af =g,

G A E o= p/F =g~ P (2.9)

Moreover, however small the difference of parameters
x(2) — x(1) for two points M, and M, on the fractal, though
the distance in the plane (Z (x,) — Z [x,}| vanishes, the dis-

tance along the fractal remains infinite.
However, let us build the following sequence:

a,=a?, ' =laqp"=0a,a, ~a (2.10

where g is a nonzero namber. Assume now that the a,’s are
the parameters of a given sequence of points M, on the
curves F, . The curvilinear coordinates of these points along
F_ are equal to

np?

I, =.%.,a, =a=const {2.11)

For example, in Fig. 4 the sequence of parameters 0.1, 0.03,
0.021, 0.0123, ... defines points at a constant distance 0.1
from the origin on the respective curves F, F,, F3, F, ... . Let
now n — o and consider the limit point M of the sequence
M, on F. From Eq. {2.10)its parameterislim (¢,} == 0,i.e., M
coincides with the origin 0; however, from Eq. (2.11), the cur-
vilinear distance between O and M on the fractal is a5#0.

From this “paradox we conclude that the real coordi-
nate x is insufficient to describe thoroughly the fractal curve
F: the distance along F between two points parametrized by
two different x’s is infinite, while points separated by a finite
distance along F correspond to the same values of x. Thus
another formalism is needed, and more precisely a set “larg-
er” than R: Nonstandard analysis'? which allows dealing
both with infinitesimals and infinite numbers, provides such
a frame, well adapted to the study of fractals, as we show in
the following sections.

1Il. NONSTANDARD ANALYSIS: A REMINDER

Nonstandard analysis (NSA} may be considered as the
solution A. Robinson worked out for the old problem of
infinitesimals. Leibnitz, founder of differential calculus,
thought of “infinitely small” and “infinitely large’ numbers
as ideal numbers to which operations on usual numbers

£ ‘_/\— a = 0.1

F, _/\_y/\z_k a,=0.03
F; ..A.’A(_r\? 3 ":';"\V..,._._..,. a, = u.021
F ..nf‘\bu “ a,=0c.0123

FIG. 4. A sequence of points on F, with constant curvilinear distance to the
origin.
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would apply, though he was unable to build a coherent sys-
tem: In fact the up to now accepted signification of these
expressions involves the theory of limits and the so-called
epsilon-delta method according to the works of Cauchy and

Weierstrass. However, Robinson'*'* has demonstrated that

real numbers R can be extended to *R which contains infi-
nitely small and infinitely large numbers.

We will not try here to present a detailed description of
NSA, but only recall some basic results useful in what fol-
lows independent of the precise way the theory is evolved,
using, e.g., free ultrafilters and equivalence classes of se-
quences; seec Robinson,* Stroyan and Luxemburg,'* or us-
ing an axiomatic extension of the Zermelo set theory, see
Nelson.'®

The set R of hyper-real numbers is a totally ordered and
non-Archimedean field. The set R of standard numbers is a
subset of *R. *R contains infinite elements, i.e, elements A
such that Vn € N, |4 | > n. It also contains infinitesimal ele-
ments, i.e., B such that ¥V n € N (n5£0), |B | < 1/n. A finite
element Cisdefined: 3m € N, |C| < m. The set of infinitesi-
mals is denoted by o, the set of finite numbers by © and the
set of infinite numbers by *R . Any finite number a € O can
besplitupinasinglewayasq =r + ¢, wherer € Rande € 0.
In other words, the finite hyper—reals contain the ordinary
reals with new numbers g clustered infinitesimally closely
around each ordinary real 7. Their set {a} is called the mo-
nad of r. The real r is said to be the “standard part” of the
hyper-real g, a function denoted by » = st{a). The “st” func-
tion is very useful for nonstandard demonstrations of stan-
dard theorems. For instance a sum X f,, is said to converge
if for different A ’s belonging o the set of infinite hyperna-
tural numbers *N _, st (£ £, ) are all equal to the same finite
number. Apart from the strict equality ** = ”, one introduces
the equivatence relations *“ = meaning “infinitely close to,”
ie,a=b (<)stla — b)=0, and the relation “ ~" meaning
“of the order of,” 1.e., a~b (<} T k€ R, k #0 such that
a=kb.

Formal descriptions of NSA may be found in Refs. 14—
17. There have also been some attempts of applications of
NSA to physics, e.g., Kelemen and Robinson, '*'® Moore,*
Anderson.”!

IV. NONSTANDARD COORDINATES ALONG
FRACTALS

In Sec. I1, a fractal in R? was parametrized by a real
number belonging to the interval [0,1]:

T .

PP P
Let us generalize the usual fractal by introducing a curve F,
in *R?, parametrized by an hyper-real number x* ¢*[0,1], as

defined by the *-finite power series expansion

+ - (a.1)

x?l

X—m X
x*z%q—..._;, — +ﬁ+...+ — (4.2)
14 P P

where @ €*N . In other terms, ¥,, may be obtained by ap-
plying the building process in Sec. II (i.e., build F, , , by
substituting to each segment of F,, F, scaled by ¢~ "} @
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times. It should be noticed that F, is not a fractal in the
nonstandard sense (since the fragmentation is * limited up to
@) but its standard part is identical to the usual fractal, i.e.,

F==st(F ). (4.3)
Then the study of F,, allows us to study the properties of F,
thanks to the standardization axiom.

A first advantage is that, while the length of Fwasunde-
fined, the length of F, is defined:

Z,=(p/qf* =g""" " (4.4)

While the surface of F'was zero, the surface of F,, is an infini-
tesimal:

= (ol =g~ 2P (4.5)

The curvilinear coordinate £ of the point parametrized by x*
is now also defined on F,

F=x*&, =q "[x, +x,  p+—+xp°" . (46)
‘This verifies that F, is built up with elementary segments of
length g ~ “. By using an infinitely great magnifying power,
F,, canbe drawn exactly (while this was not the case for F) as
in Fig. 5. The fractal is no more a limit concept.

Let us now utilize the new concept of F,, to study or
clarify some problems specific of fractals, which may be rel-
evant for physical applications.

A. Finite distance along the fractal

In Sec. H we obtained a point separated from the origin
by a finite nonzero distance along the fractal, while its pa-
rameter was x = 0. This situation may be clarified by defin-
ing M such that

=25, p M=1 4.7
Then M is a solution of the equation

P Y=g (4.8)
so that

M =w(l —log p/log g} = w(1 — 1/D). (4.9)

Generally M is not an integer; therefore we define 1 € *N
as

A =Int{M) = Intw{l — 1/D)], (4.10)
where Int(X ) is the integer part of X (it is straightforward to

FIG. 5. Infinite magnification of curve F,,, the standard part of whick is the
fractal F.
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verify that this functionis still defined in *R). For any A ‘such
thatA’~A (therelation ~ “ofthe order of ” hasbeen defined
in Sec. IIT), the curvilinear distance along the fractal £, .
=.%, p~* belongs to R. However, and this allows one to
understand why x = 0 while £ 50, the corresponding dis-
tance in the R? plane is an infinitesimal, ¢ ~*/, the standard
part of which is thus zero.

Consider two points on F,, separated by a curvilinear
distance £. Depending on the power n of p in the expression
(4.6) of &, three levels may be distinguished on F:

—n € N: Finite distance in the R? plane, infinite along
the fractal.

—n ~ A: Infinitesimal distance in the R? plane, finite
distance along the fractal.

—n ~e: Infinitesimal distance in R? and on F,. At this
level the two distances are of the same order.

B. Intrinsic building of 7

Parametric equations for F have been given in Sec. IT
(Eq. 2.6): It relates the parameter x to the coordinates X, ¥in
the R? plane. An intrinsic building of F,,, independent of the
plane in which it is embedded, is possible: We only need to
know the change in direction from each elementary segment
of length ¢~ “ to the following one. In Sec. II, we had set 5,
= @; — w;_;, theangle between two segments in F, (see Fig.
1). Consider the infinitesimal segment of curvilinear coordi-
nate £ on F,,, and define A such that x_, _, is the first nonzero

figure of the hypernatural number ¢“£ in the base p:

§=q °

X0+ 0Xp+ - +0Xp" " 4x, 0"+ +xp" ]

(4.11)

The relation for the angle we were looking for and which
allows an intrinsic building of F,, is simply given by

S0,(&) = bo, (4.12)

A somewhat paradoxical property of fractals is that this rela-
tive angle exists and may be computed for any value of &,
while on the contrary the absolute angle w, (£ ) does not exist
as soon as £¢“ becomes infinite, since

“E
of)= 3 b,
75 =1
so that the value of st {@(¢ )] depends on that of @ (this is the
nonstandard transfer of the nondifferentiability of F).

w—h'

(4.13)

C. Family of curves £, and ¢ differentiabiiity

The standard part of any curve differing from F,, only
by infinitesimals will also be the fractal F. Thisis true for any
F , witho' € *N_ , »'#w, but might be generalized. In par-
ticular the “broken™ aspect of 7, can be given up and F,
replaced by a smoothed nonstandard curve F,, with
F = st(F ). Akind of differentiability can be defined for F /.

Indeed, nonstandard analysis may be used to define dif-
ferentiability of standard functions'®:
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[ —fia) SOV =Sl e

x—a y—a
then f*(a) = st (M)
x—a

This definition could be generalized to an “e differentia-
bility” of nonstandard curves in the following way: If I e € o,
suchthat ¥ x, y,a € *R verifying jx — af <cand | y — a| <¢,
and

V xzy=a,

[ = f@) _ S~ fla)

X —a y—a
finite, then
i — o (S1X) = fla)
fe{a)_—st( x—a )

In that sense, one can define a curve F [, which is ¢
differentiable everywhere, since the above definition is veri-
fied by taking € = €, with €, ¢° 0. k is clear that differen-
tiability implies € differentiability but that the reverse propo-
sition is false, as shown by fractals.

V. GENERALIZATIONS AND CONCLUSION

To simplify the description of the concepts introduced
in this paper, we have worked only with regular fractals of
topological dimension 1 in R% Some straightforward gener-
alizations may be considered.

For instance a fractal curve in R® is parametrized in the
same way as in R?, the angles o, of the elementary segments
of F, being replaced by rotation matrices R, that define the
new reference system tied to each segment v;; the elementary
points are defined by vectors u, with v, == w,__, — u,. Thus,
if p and ¢ have the same definitions as above, a point of
parameter x = 0.x,x,---x, - in the counting base p is refer-
enced by a vector:

ufx) = Z R, R, R, u,

n=0

g (5.1)

Such a curve has a topological dimension 1 and a fractal
dimension D = log p/log ¢ lying between 1 and 3.

Another possible generalization is to give up self-simi-
larity and to build a more general fractal curve in R>. F, is
built up with p, segments, the coordinates of the “breaking
points” being Z, , withx, == 0, 1,..., p — 1. In each segment
of F referenced by x,, we introduce p, new segments de-
finedby Z, . ,x,=0,1,.,p, — l,and angle w,, ; we then
build F,. This construction is extended to the infinite, by
giving ourselves the coordinates Z, _, , where x,

€10,1,..., Py, , — 1] and angles @, . There are
Px,.x, ., New segments of length 1/g, .., . Since the base p
varies from segment 1o segment, the sequence x . x; «-x, - is
now only a code and cannot be summarized by a number.
The complex coordinate in the B? plane of a point on Fis
then

florg, + = +ay )
bl le Xyt e
Zixxy Xy )= Y . {(5.2)

n=0 4y, q)c,x2 . Qx, X,

2]

This construction is obviously not unique. The dimension of
F could be defined as { p} (¢~ ?) =1 (see Mandelbrot?).
Up to now, only fractals with a globally given dimen-
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sion I} have been discussed. However the fractal dimension
can clearly be a local property,” varying with the curvilinear
coordinate D = D (£ ); this is more easily understandable by
remembering the underlying infinitesimal structure.

In the future, we will try to extend the parametrization
presented here to fractals of topological dimensions greater
than one. Instead of studying fractal objects embedded in an
Euclidean space, the aim of such a work would be to define a
Jractal space intrinsically. Its dimension could then be a gen-
eric parameter and function of the coordinates in the same
way as curvature occurs for curved spaces.

In a forthcoming paper,? one of the authors will con-
sider physical applications of this formalism to guantum me-
chanics (uncertainty relations and theory of measure). We
think the notions developed here could help in the field of
quantization of gravity: the studies in this field usually as-
sume without question an underlying, eventually foamy,? 4-
manifold. Below some characteristic length, space itself
could become a fractal. To be more specific one could for
instance perform latticelike gauge field caleulations® on a
fractal. Let us notice that the path-integral ingredient of
such calculations has also recently been formulated in terms
of nonstandard analysis.”® When applied to cosmology these
ideas lead to the natural speculation that the very carly uni-
verse experienced in its whole a noninteger-dimensional
phase. To conclude we hope that these new trends will help
to answer the question: Why does the Macroscepic space
appear (o be three dimensional?
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