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Abstract. We briefly recall the main steps by which we suggest to found quantum mechanics and
gauge field theories on the principle of relativity, once it is extended to scale transformations of the
reference system. The wave functions are constructed as consequences of the nondifferentiability of
a continuous space-time, while the Schrödinger and Dirac equations are obtained from its geodesics
equations. In this framework, the gauge fields emerge as manifestation of the fractal geometry, and
the gauge charges as the conservative quantities which are built from its internal symmetries.
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INTRODUCTION

In the theory of scale relativity, one gives up the hypothesis of space-time differentiabil-
ity. One can prove that a nondifferentiable continuum is fractal [1, 2], i.e., it is explicitly
dependent on the scales of resolution. This leads one to extend the principle of relativity
to scale transformations. In the present contribution, we summarize the steps by which
one recovers, in this framework, the main postulates of quantum mechanics and of gauge
field theories. A more detailed account can be found in Refs. [6, 10, 14, 15].

QUANTUM MECHANICS IN SCALE RELATIVITY

From the three main consequences of nondifferentiability [7], namely, (i) infinite number
of geodesics, (ii) breaking of the reflexion invariance of the time differential element
dt that leads to a two-valuedness of the velocity field, (iii) fractal dimension 2 of the
geodesics, one describes the elementary displacementsdX on a fractal space [1, 3, 4, 5]
asdX± = d±x+dξ±, wheredξ is the “fractal part” anddx the “classical part”,

d±x = v± dt, dξ± = η
√

2D dt1/2. (1)

Here η is a stochastic dimensionless variable such that< η >= 0 and< η2 >= 1,
andD a parameter that generalizes the Compton scale. The two timederivatives are
then combined in a complex derivative [1],̂d/dt = (d+ + d−)/2dt − i(d+ − d−)/2dt.
Applying this operator to the position vector yields a complex velocityV = d̂x/dt. Then
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the geodesics equation,̂dV /dt = 0, can be integrated under the form of a generalized
Schrödinger equation [1, 2, 6, 9]. We have recently generalized the proof to the whole
velocity field Ṽ = V +W , including its differentiable and nondifferentiable parts [13,
10]. We can build from it a full complex action,dS̃ = (1/2)m(V + W )2dt, then
define a full wavefunction as̃ψ = exp(iS̃ /2mD), such thatṼ = V +W = ∇S̃ /m =
−2iD∇ ln ψ̃. In our framework, this relation keeps a mathematical and physical meaning
in terms of fractal functions, explicitly dependent ondt and divergent whendt → 0. Then
one builds a generalized full covariant derivative, that reads [10]

d̂
dt

=
∂
∂ t

+(V +W ).∇− iD(1+ ζ̃ )∆, (2)

where ζ̃ is a stochastic variable of zero mean. Using this covariant derivative, we
can finally write a covariant equation which keeps the form ofNewton’s fundamental
equation of dynamics,

d̂
dt

Ṽ = −
∇φ
m

. (3)

This equation can be integrated in terms of a generalized Schrödinger equation [13, 10],

D
2∆ψ̃ + iD

∂ψ̃
∂ t

−
φ

2m
ψ̃ = 0, (4)

which now allows fractal solutions, in agreement with Berry’s [11] and Hall’s [12]
results. But this property is obtained here as a manifestation of space nondifferentiability.

The von Neumann’s and Born’s postulates are then derived from the identification of
“particles" with the various geometric properties of fractal space-time geodesics [6, 10].

Then the account of a new two-valuedness, consequence of nondifferentiability, leads
to introduce bispinors in terms of biquaternionic wavefunctions, and to obtain the Dirac
[6] and Pauli [14] equations as geodesics equations of a fractal space-time.

GAUGE THEORIES IN SCALE RELATIVITY

The theory of scale relativity can also be applied to the foundation of Abelian [2, 8]
and non-Abelian [15] gauge theories. This application is based on a general relativistic
description of the internal structures of nondifferentiable space-time geodesics in terms
of tensorial scale variablesηαβ (x,y,z, t) which may now be function of the coordinates.

We assume for simplicity that the two tensorial indices can be gathered under one
common index. The infinitesimal transformation law on theηα can be written in a linear
way asη ′

α = (δαβ +δθαβ )ηβ . Since theηα ’s are now functions of the standard space-
time coordinates, this leads us to define a new scale-covariant derivative,

dηα = Dηα −ηβ δθαβ = Dηα −ηβW µ
αβ dxµ . (5)

The gauge potentialsW µ
αβ naturally emerge from this geometrical framework.



The next step amounts to describe how various physical quantities transform under
theseηα transformations. To this purpose we generalize to multiplets the relationVµ =

iλ ψ−1∂µ ψ obtained in the Dirac spinor case [6]:

V
µ
jk = iλ ψ−1

j ∂ µ ψk. (6)

The actiondS jk = dS jk(xµ ,V
µ
jk ,ηα) also becomes a biquaternionic tensor, so that

∂ µ S jk = Dµ S jk −ηβ ∂S jk

∂ηα
W µ

αβ . (7)

This result allows one to define a general non-Abelian group of scale transformations
whose generators areT αβ = ηβ ∂ α , yielding the generalized charges,

g̃
c

tαβ
jk = ηβ ∂S jk

∂ηα
. (8)

Knowing that theα, β represent two indices each, this is a large group that contains the
standard modelU(1)×SU(2)×SU(3) as subset [15].

As we have shown in more detail in Ref. [15], the various ingredients of Yang-Mills
theories can be recovered in such a framework, but they are now founded on geometric
and scale-relativistic first principles.

CONCLUSION

In this contribution, we have recalled the main steps that lead to a new foundation of
quantum mechanics and of gauge fields on the principle of relativity itself, once it is
generalized to scale transformations of the reference system.

For this purpose, two covariant derivatives have been constructed, which account for
the nondifferentiable and fractal geometry of space-time,and which allow to write the
equations of motion as geodesics equations. After change ofvariable, these equations
finally take the form of the quantum mechanics and quantum field equations.
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