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Abstract. We briefly recall the main steps by which we suggest to fourahtium mechanics and
gauge field theories on the principle of relativity, oncesiektended to scale transformations of the
reference system. The wave functions are constructed agqoances of the nondifferentiability of
a continuous space-time, while the Schrédinger and Diraeatians are obtained from its geodesics
equations. In this framework, the gauge fields emerge asfesdation of the fractal geometry, and
the gauge charges as the conservative quantities whicludrédm its internal symmetries.
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INTRODUCTION

In the theory of scale relativity, one gives up the hypothesspace-time differentiabil-
ity. One can prove that a nondifferentiable continuum istab[1, 2], i.e., it is explicitly
dependent on the scales of resolution. This leads one tac#te principle of relativity
to scale transformations. In the present contribution, waraarize the steps by which
one recovers, in this framework, the main postulates of yummechanics and of gauge
field theories. A more detailed account can be found in Réfsl(, 14, 15].

QUANTUM MECHANICSIN SCALE RELATIVITY

From the three main consequences of nondifferentiabilityfamely, (i) infinite number
of geodesics, (ii) breaking of the reflexion invariance o thme differential element
dt that leads to a two-valuedness of the velocity field, (iigctal dimension 2 of the
geodesics, one describes the elementary displacemh¥ris a fractal space [1, 3, 4, 5]
asdXy = dix+dé+, wheredé is the “fractal part” andix the “classical part”,

dix=v. dt, d& =nv22dtY/2 (1)

Heren is a stochastic dimensionless variable such thaj >= 0 and< n? >= 1,
and  a parameter that generalizes the Compton scale. The twodameatives are

then combined in a complex derivative [H/dt = (d; +d_)/2dt —i (d, —d_)/2dt.
Applying this operator to the position vector yields a coexplelocity?” = dx/dt. Then
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the geodesics equatio&%/dt = 0, can be integrated under the form of a generalized
Schrodinger equation [1, 2, 6, 9]. We have recently germsdlthe proof to the whole
velocity field 7 = ¥ + %, including its differentiable and nondifferentiable saft3,
10]. We can build from it a full complex actiord. = (1/2)m(¥ + # )2dt, then
define a full wavefunction a = exp(i.¥ /2m2), such that/ = ¥ + % = 0./ /m =
—2i20In . In our framework, this relation keeps a mathematical angiglal meaning

in terms of fractal functions, explicitly dependentdirand divergent whedt — 0. Then
one builds a generalized full covariant derivative, thase[10]

d o . .

a—ﬁ+(ay+7/).m—|9(l+5)ﬂ, (2)
Wheref is a stochastic variable of zero mean. Using this covariamivdtive, we
can finally write a covariant equation which keeps the fornNefvton’s fundamental
equation of dynamics,

d ~ e
&’ = m ()
This equation can be integrated in terms of a generalizetb8tiger equation [13, 10],
00 ¢
2 _ =
7\ ESV 5t om 0, 4)

which now allows fractal solutions, in agreement with Bérrji1l] and Hall's [12]
results. But this property is obtained here as a manifestafispace nondifferentiability.
The von Neumann’s and Born’s postulates are then deriven fhe identification of
“particles” with the various geometric properties of fed@pace-time geodesics [6, 10].
Then the account of a new two-valuedness, consequence diffeoentiability, leads
to introduce bispinors in terms of biquaternionic wavetionts, and to obtain the Dirac
[6] and Pauli [14] equations as geodesics equations of safrapace-time.

GAUGE THEORIESIN SCALE RELATIVITY

The theory of scale relativity can also be applied to the éion of Abelian [2, 8]
and non-Abelian [15] gauge theories. This application seldaon a general relativistic
description of the internal structures of nondiffereniigedpace-time geodesics in terms
of tensorial scale variableg,z(X,Y,zt) which may now be function of the coordinates.

We assume for simplicity that the two tensorial indices carghthered under one
common index. The infinitesimal transformation law on figecan be written in a linear
way ashg = (8qp +864p) nP. Since then,’s are now functions of the standard space-
time coordinates, this leads us to define a new scale-coval&ivative,

dng = Dna —nP 86,5 = DNa — nPWS; dxy. (5)

The gauge potentiaWé‘B naturally emerge from this geometrical framework.



The next step amounts to describe how various physical giegntransform under
thesen, transformations. To this purpose we generalize to mulsglee relation?), =

iA zp*la“w obtained in the Dirac spinor case [6]:
Ve =12 g0k i (6)

The actiondSjk = dek(x“,”f/j‘,i, Nq) also becomes a biquaternionic tensor, so that

0S;
g, _pHg, _ B Ik \WH
This result allows one to define a general non-Abelian grdugcale transformations
whose generators aiie? = nf a7, yielding the generalized charges,
g ap B dsjk
St =nf =,

Knowing that thea, B represent two indices each, this is a large group that amthe
standard modeJ (1) x J(2) x J(3) as subset [15].

As we have shown in more detail in Ref. [15], the various idggats of Yang-Mills
theories can be recovered in such a framework, but they avdowmnded on geometric
and scale-relativistic first principles.

CONCLUSION

In this contribution, we have recalled the main steps thad f® a new foundation of
guantum mechanics and of gauge fields on the principle ofivijaitself, once it is
generalized to scale transformations of the referencesyst

For this purpose, two covariant derivatives have been oectsid, which account for
the nondifferentiable and fractal geometry of space-tiamel which allow to write the
equations of motion as geodesics equations. After changara@ble, these equations
finally take the form of the quantum mechanics and quanturh &glations.
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