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ABSTRACT

We apply the scale-relativity theory of turbulence to the turbulent boundary layer problem. On the basis of Kolmogorov’s scaling, the time
derivative of the Navier–Stokes equations can be integrated under the form of a macroscopic Schr€odinger equation acting in velocity-space.
In this equation, the potential coming from pressure gradients takes the form of a quantum harmonic oscillator (QHO) in a universal way.
From the properties of QHOs, we can then derive the possible values of the ratio of turbulent intensities in the shear flow,
R ¼ ru=rv ¼ 1:356 0:05. We show that the Karman constant is theoretically predicted to be j ¼ 1=R3, in good agreement with its typical
value j � 0:4 and its observed possible variations. Then, we find a generic solution of our equations for the normal Reynolds stress pure pro-
file, which closely fits the data from laboratory and numerical experiments. Its amplitude, lB, is the solution of an implicit equation that we
solve numerically and analytically through power series, yielding to lowest order lB � 1:35 � �2ðR� 1:35Þ, plus smaller contributions from
other parameters. Consequently, the correlation coefficient of velocities is given by q � 1=R l2B � 1=R3 � 0:4 and is therefore equal to the
Karman constant to lowest order, in agreement with its universally measured value �0:4 for all shear flows. We also find a general similarity
between turbulent round jets and boundary layers in their outer region. These results therefore apply to a wide set of turbulent flows, includ-
ing jets, plane boundary layers, and, to some extent, channels and pipes.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0212386

I. INTRODUCTION

In the study of turbulence, the plane boundary layer plays a
prominent role since the solution of the mean flow based on the
asymptotic matching of the inner and outer layers yields the very
important result of the “log-law of the wall.”1,2 With the Kolmogorov
scaling law (K41),3 this logarithmic velocity profile in the inertial sub-
layer is indeed one of the major landmarks in turbulence theory. With
analytical tools of a rather general nature, a very specific result has
been obtained, even though the equations of motion cannot be solved
in general.4,5 This approach became “classical” and was universally
applied to all wall-bounded flows. The same logarithmic law and its
parameters, in particular the Karman constant j � 0:4 on which it
depends, were considered valid for boundary layers, channels, and
pipes. Laboratory and numerical experiments suggest that the Karman
constant is universal, although with small possible variations of the
order of�5%,6,7 which has led to question its strict universality.8

The log-law profile equation and its intrinsic Karman constant
are widely used in fluid mechanics. However, despite numerous
theoretical and empirical attempts to establish formal bases for these

concepts, no consensus has been reached.9 The log-law has been theo-
retically justified through many different arguments and has been
advocated for a wide range of wall-bounded shear flows (see references
in Refs. 6 and 9). The value of the Karman constant has been measured
through numerous experiments and direct numerical simulations of
Navier–Stokes equations (DNS).6 Many attempts of theoretical deriva-
tions have been made (see review in Ref. 9) but always from merely
postulated models instead of the fluid mechanics equations. As a result,
these theoretical derivations do not concur and the origin of its value
remains elusive.

This difficulty can be traced back to a more fundamental and uni-
versal problem encountered up until now by all theories of turbulence:
the closure problem. When a fluid becomes turbulent, its properties
are described not only by the mean velocities but also by their fluctua-
tions described by the Reynolds stresses. As a consequence, the num-
ber of equations is smaller than the number of unknowns and the
present theory remains incomplete.

In a recent work,10 we have suggested a solution to this closure
problem and applied it to turbulent jets by using the scale-relativity
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approach to turbulence.11–13 This has allowed us to obtain theoretical
understanding and predictions for the Reynolds stress profiles and for
several universal dimensionless quantities, such as the jet opening
angle aJ � 0:2, the ratio R � 1:35 of turbulent intensity amplitudes
along the radial direction over the axial one, the mean ratio X � 1=4
of turbulent intensities over the mean velocity on the jet centerline,
and the correlation coefficient of velocities, which we have found to be
given by q ¼ 1=R3 � 0:4.10

In the present paper, we apply the same approach to the turbulent
plane boundary layer problem (far from the wall, i.e., in the zone where
viscosity becomes negligible), so it will be relevant to fully developed
channel flow, fully developed pipe flow, and the flow in a flat plate
boundary layer. These simple flows are of practical importance and
have played a prominent role in the historical development of the
study of turbulent flows.5 Their description is part of basic textbook
knowledge on turbulence,4,5,14,15 yet many features characterizing
them remain empirical, in particular purely numerical constants such
as the Karman constant.

Tennekes and Lumley4 have remarked that boundary layer flows
are more complicated than flows in free shear layers (such as in our
previous study of the free round jet) because the presence of a solid
wall imposes constraints that are absent in wakes and jets. Shear flows
are very important to understand turbulence, which is often described
as just an instability generated by shear.

The dimensionless character of seemingly universal physical con-
stants appearing in turbulence, such as the Karman constant for
boundary layers, makes the understanding of their value one of the
most fascinating problems in physics. Moreover, this question is clearly
related to a more general problem in the theory of turbulence, namely,
the closure problem: when jumping to a turbulent behavior, a fluid is
described not only by its mean velocities, which are solutions of the
continuity and Navier–Stokes equations, but also by the velocity fluc-
tuations. In today’s theory, there are no known first principles equa-
tions for the covariances of these fluctuations (Reynolds stress), which
yet appear in the Reynolds averaged Navier–Stokes (RANS) equations,
so the number of unknowns is larger than the number of equations.
The closure is therefore obtained using hypothetical models.

The scale-relativity approach to turbulence10–13,16 is of a different
nature. In this framework, the closing equations do not come from an
assumed model. They just derive from a reformulation and an integra-
tion of the time derivative of the Navier–Stokes equations themselves,
written in v-space and accounting for the non-differentiable and fractal
nature of velocities in the turbulent regime at inertial scales (according
to Kolmogorov K41 scaling). The main result of this approach is that
these v-space NS-derivated equations can be re-integrated under the
form of a macroscopic Schr€odinger equation.13,17,18 In this equation,
the microscopic Planck constant, �h, is replaced by a new macroscopic
constant, �hv, resulting from the self-organization of the turbulent
medium, that is proportional to the rate of dissipated energy e. The
square of the modulus of the wave function that is the solution of this
equation, P ¼ jwj2, yields the probability density distribution (PDF) of
turbulent velocity fluctuations, from which the Reynolds stresses can
be calculated, thus solving the closure problem.

Moreover, the potential entering this v-Schr€odinger equation is,
in a universal way, that of a harmonic oscillator,10,16 so we can
theoretically predict that the local velocity PDFs are that of quantized
harmonic oscillators (QHOs), possibly damped (QDHOs). This

theoretical expectation has been well verified by an analysis of experi-
mental data.13

In this paper, we first recall in Sec. II the governing equations for
the shear flow, which include in our approach both the Reynolds aver-
aged Navier–Stokes (RANS) equations in the boundary layer approxi-
mation and the v-space macroscopic Schr€odinger equation derived
from the Navier–Stokes equations in the turbulent regime. In Sec. III,
we recall some well-known basic theoretical results concerning the tur-
bulent boundary layer, such as the log-law of the wall involving the
Karman constant and the derivation of the Reynolds shear stress pro-
file from the RANS equations. In Sec. IV, we recall our theoretical pre-
diction for the possible values of the turbulent intensity ratio
R ¼ ru=rv ¼ 1:356 0:03 far from the wall, which is similar to its der-
ivation for the round jet10 from the general properties of QHOs. Then,
we give in Sec. V a general physics argument leading to the conclusion
that the Karman constant is given by j ¼ R�3, which agrees with its
values measured in laboratory and numerical experiments. The pure
(normalized) profile of the normal Reynolds stress, r2v , is derived in
Sec. VI from the normal component of the v-Schr€odinger equation in
a QHO potential. In Sec. VII, an implicit equation is found for its
amplitude, l2B, from the uv component of the v-Schr€odinger equation.
We solve this equation both numerically and analytically through
power series, thus obtaining an expression for lB in function of R, with
smaller dependence on other parameters. Then, we show in Sec. VIII
that, applying relevant scaling factors, the turbulent round jet and the
turbulent boundary layer become similar in the region z >� 0:2,
where z ¼ y=d in the boundary layer and z ¼ r=ax in the jet, being
described by the same equations. In Sec. IX, we finally suggest a solu-
tion for the puzzle concerning the value of the coefficient of correlation
of velocities, which is found in observations, experiments, and direct
numerical simulations to be universally equal to q � 0:4 for all shear
flows. These results are discussed in Sec. X while Sec. XI is dedicated to
the conclusion.

II. GOVERNING EQUATIONS FOR THE TURBULENT
BOUNDARY LAYER
A. RANS equations

We shall study in the present paper the turbulent boundary layer
that appears upon a flat plate subjected to a plane flow parallel to the
wall. Such a flow is a particular case of a more general ensemble
including channels and pipes.

We consider here only the two Cartesian coordinates x along the
wall in the direction of the incident flow and y normal to the wall. We
use the Reynolds decomposition of velocities Ut ¼ U þ u; Vt

¼ V þ v, where U(x, y) and V(x, y) are their average values and u, v
their turbulent fluctuations. The fluid mechanics equations for the
boundary layer consist of the continuity equation for the mean
velocities,

@xU þ @yV ¼ 0; (1)

and of the Reynolds averaged Navier–Stokes (RANS) equations:

xRANS: U @xU þ V @yU þ @xð �p þ r2uÞ þ @yruv � �DU ¼ 0; (2)

yRANS: U @xV þV @yV þ@yð�pþr2vÞþ@xruv � �DV ¼ 0; (3)
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where �p is the average pressure, r2u ¼ hu2i; r2v ¼ hv2i, and ruv
¼ hu vi the Reynolds stresses and where we have taken . ¼ 1 for sim-
plification owing to the assumed incompressibility of the fluid.

In the so-called “boundary layer approximation,” the terms
� @x@xU; U @xV; V @yV , and �DV are neglected. Moreover, in the
turbulent case one may neglect the axial derivative of the Reynolds
stresses on the grounds that they are small compared with the lateral
gradients.5 One obtains

U @xU þ V @yU ¼ � @2U=@y2 � @yruv � @xðp0 þ r2u � r2vÞ ¼ 0;

(4)

�p ¼ p0ðxÞ � r2v : (5)

These equations apply to all plane two-dimensional shear flows
bounded by quiescent fluid or a uniform stream, such as plane jets,
plane mixing layers, plane wakes, and boundary layers.5 Only the
boundary conditions differ between these flows, which are all charac-
terized by a characteristic flow width d ¼ dðxÞ. Except near walls, the
viscous term is negligible.

As usual in turbulence, this system of equations is not closed
since there are three equations for six unknowns, U, V, �p, ruv, ru, and
rv. The scale-relativity approach to turbulence10–13,16 allows to solve
this closure problem by deriving a new expression for the Navier–
Stokes equations under turbulent conditions.

B. Schr€odinger equation in velocity-space

The fundamental equation of dynamics can be integrated in the
scale-relativity paradigm under the form of a Schr€odinger equation, in
which the constant is no longer the microscopic Planck constant, �h,
but a new macroscopic constant emerging from self-organization of
the system under consideration. Apart from this change of constant,
the theory shares the same mathematical structure as standard quan-
tum mechanics, in particular the existence of a wave function that is a
solution of the Schr€odinger equation and whose modulus squared
yields the probability density of states.

The conditions that underlie such a transformation are non-
differentiability and fractality, which involve an explicit scale depen-
dence of the various variables. We have shown13 that these conditions
(infinite number of virtual trajectories, fractal dimension two of each
trajectory, and two-valuedness of the derivatives as a consequence of
non-differentiability) are satisfied in velocity-space for a turbulent
fluid, the fractal dimension two being a manifestation of the K41 scal-
ing dv2 � dt.

This method has been recently applied to turbulent round jets10

and has allowed us to solve the closure problem in this case. The ques-
tion raised in the present paper is whether we can obtain a similar
result in other types of shear flow, such as flat plate boundary layers,
channels, and pipes.

Let us summarize our method (see Refs. 10 and 13 for more
details). The time derivative of the NS equations in Newtonian form is
given by da=dt ¼ �r _p. In order to account for the various geometric
effects of non-differentiability and fractality, one replaces d/dt by a
new total derivative operator:

bd
dt

¼ @

@t
þA:rv � iDvDv; (6)

where the acceleration A is now complex as a manifestation of the
fundamental two-valuedness of derivatives implied by non-
differentiability. One obtains a new form of the equation of dynamics
in v-space:

bd
dt

A ¼ @

@t
þA:rv � iDvDv

� �
A ¼ _F ; (7)

where F contains the pressure gradient term and possibly any applied
external force. We introduce a wave function wv ¼ eiSv=�hv , where S is
the complex action and �hv the new Planck-like constant in v-space,
which is proportional to the rate e of transferred energy dissipated at
viscous scales. One can prove13,17–19 that Eq. (7) can be integrated
under the form of a macroscopic Schr€odinger equation in v-space:

D2
v Dwv þ iDv

@

@t
wv �

1
2
/v wv ¼ 0 (8)

(with Dv ¼ �hv=2), which yields the PDF of velocities as Pv ¼ jwvj2. In
this Schr€odinger equation, the potential energy takes the universal
form of a harmonic oscillator v-potential,10,16 which can be written as
follows when the mean pressure is time-independent:

/vðu; vÞ ¼
1
2

@2�p
@x2

u2 þ 2
@2�p
@x @y

u vþ @2�p
@y2

v2
 !

: (9)

III. THEORETICAL ELEMENTS

We shall recall in this section some well-known basic theoretical
results concerning the turbulent boundary layer that will be necessary
for our theoretical prediction of the Reynolds stress profiles and of the
coefficient of correlation of velocities.

A. Thickness of the turbulent boundary layer

It has been shown by Landau and Lifchitz14 that, c(x) being the
solution of the equation

c ln ðc RxÞ2 ¼ 2j2; (10)

the thickness of the flat plate turbulent boundary layer (FPTBL) is
given by

dðxÞ ¼ a0 x
ffiffiffiffiffiffiffiffi
cðxÞ

p
: (11)

The parameter a0 is an empirical numerical constant that has not been
theoretically predicted to date, for which Landau has given the approx-
imate value a0 � 0:3. In this expression, Rx ¼ U x=� is the x
Reynolds number. For j ¼ 0:4, one finds that a very good approxima-
tion for the solution of this equation is

cðxÞ ¼ 0:191R�2=7
x : (12)

This leads to a FPTBL thickness of

dðxÞ ¼ d0 x R
�1=7
x ; (13)

where d0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
0:191

p
a0 ¼ 0:437 a0. This result demonstrates theoreti-

cally the R�1=7
x behavior of the BL thickness, with an exponent slightly

different from the original Prandtl value �1=5 (see Ref. 20, p. 638).
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The numerical constant in this relation is d0 ¼ 0:16, which would
yield a0 ¼ 0:37, of the order of magnitude of the Landau value.

The wall-friction velocity v? ¼
ffiffiffiffiffiffiffiffi
r=.

p
is given by

v? ¼ U
ffiffiffiffiffiffiffi
c=2

p
,14 i.e.,

v? ¼ 0:309U R�1=7
x ; (14)

where r is the frictional force acting on the unit area of the wall and .
is the fluid density. Actually, the effect of the x�1=7 variation is negligi-
ble, and we shall take in what follows dðxÞ ¼ aB x, with aB
¼ 0:16R�1=7

x ¼ (0.06, 0.05, 0.04, 0.03, 0.02) for Rx ¼ ð1000, 3000,
15 000, 100 000, 2� 106Þ. This can be compared to a turbulent jet
whose half-width is a x, with a � 0:2.

B. Log-law of the wall and Karman constant

The turbulent boundary layer is known to be a two-scale process.
This is usually described by using two different normalizations for the
distance y along the direction normal to the wall. Far from the wall the
flow no longer depends on the viscosity, so that one can use as refer-
ence the boundary layer thickness dðxÞ, using the dimensionless vari-
able g ¼ y=d. Near the wall, the viscosity matters and one defines
yþ ¼ y v?=�, where � is the molecular viscosity coefficient. Four
regions can then be characterized:

(1) yþ ¼ ð0� 5Þ; g � ð0� 0:0005Þ; viscous sublayer; U ¼ v? yþ;
(2) yþ ¼ ð5� 30Þ; g � ð0:0005� 0:003Þ; buffer layer;
(3) yþ ¼ ð30� 1000Þ; g � ð0:003� 0:1Þ; log-law layer; U

¼ v?ðj�1 ln yþ þ BÞ, where j � 0:4 and B � 5; and
(4) yþ ¼ ð1000� 10000Þ; g � ð0:1� 1Þ; outer layer; Coles’s wake

function correction.

The limit of the viscous sublayer is yþ ¼ 2=j ¼ 5. The point
where the linear law and the log-law match is given by yþ ¼ B
þ 6 � 11, yielding the estimate yþ ¼ 30 for the end of the buffer layer.

The log-law profile has been theoretically derived from physics
principles.1,2,14 It is a priori valid up to g � 0:1 but remains an excel-
lent approximation in most cases in an overlap layer up to g � 0:3.
The empirical parameter j is the Karman constant, for which we sug-
gest here a theoretical prediction yielding j ¼ ðrv=ruÞ3 � 0:4, in
agreement with its experimentally measured values.

Finally, near the edge of the turbulent region, the log-law must be
corrected in the case of plane boundary layers. The correction takes
the form of Coles’s wake law,21 2ðP=jÞ sin2 p

2
y
d

� �
, with a coefficient P

that vanishes for channels and pipes.

C. Reynolds shear stress: Theoretical profile

It is well known that the Reynolds shear stress, ruv, in the bound-
ary layer is almost constant for small g values and given by ruv ¼ v2?
(Ref. 4). For larger values of g, a rough approximation of its profile is
given by ruv ¼ v2? ð1� gÞ. A better solution is obtained by integrating
the RANS and continuity equations in the wall normal direction with
the assumption that V¼ 0 at the wall:22

ruv ¼ v2? þ y @xðp0ðxÞ � r2vÞ � U
ð
@xUdy þ 2

ð
U@xUdy: (15)

The term @xp0 ¼ �v2?=d yields the standard solution ruv ¼ v2?ð1
�gÞ.4 The terms involving the Reynolds stresses are found to be small.

The main correction therefore comes from the streamwise velocity U.
It is given by the log-law, which remains valid up to g � 0:3:14

U ¼ v?
1
j
ln gþ B

� �
: (16)

One finally finds that

ruv ¼ v2? 1� g 1þ aB
j2

ðln gþ Bj� 2Þ
� �� �

: (17)

It is noticeable that, with the empirical numerical values j ¼ 0:4 and
B¼ 5, the constant ðB j� 2Þ vanishes. The effect of the Coles’s correc-
tion of the Reynolds shear stress profile in the outer layer is found to
be negligible. This theoretical expectation is in good agreement with
the experimental measurements, as exemplified in Fig. 1.

IV. THEORETICAL PREDICTION OF THE RATIO
OF REYNOLDS STRESSES

Tennekes and Lumley4 have argued that the energy in the u com-
ponent differs from that in the v component because the major pro-
duction term feeds energy into r2u (along the axial direction), so the
energy must leak into r2v (along the radial direction) by inertial interac-
tion. Since the two effects (axial supply and radial leakage) are deter-
mined by the same turbulence dynamics, they concluded that
K ¼ ðr2u � r2vÞ=ðr2u þ r2vÞ � cst and that it should be less than unity.
This implies that R ¼ ru=rv > 1 should be close to a constant.

We have derived in Ref. 10 the theoretically expected possible val-
ues of R by only using a self-evident property of the turbulent jet that
appears clearly in this analysis and in the governing equations: the
mere fact that K � 0, i.e., ru � rv. Let us briefly recall here the
argument.

We apply this inequality in the scale-relativity framework, where
the derivative of the Navier–Stokes equations takes a (macroscopic)
quantum-like Schr€odinger form. We have decomposed the global
Gaussian turbulent velocity fluctuations variances r2u and r2v in terms

FIG. 1. Comparison between the theoretical prediction from RANS and continuity
equations of the Reynolds shear stress in the FPTBL [Eq. (17), red dashed curve]
and some of its experimental measurements. Green points and curve: Volino and
Schultz;22 blue: Brennen;23 Magenta: Erm and Joubert;24 brown: Brzek et al.25 The
gray dashed line is the standard approximate solution ruv ¼ 1� g (normalized to
v? ¼ 1).
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of two-dimensional quantized harmonic oscillators (QHOs), which are
known to be defined by quantum numbers fnu; nvg.

The above inequality, applied on the various excited states of a
2D QHO, simply becomes nu � nv. At this level of the analysis, we
take R ¼ cst, in agreement with Tennekes and Lumley’s argument.

Our first derivation of the range of possible values for R has been
obtained in the framework of the study of turbulent jets. This has
allowed us to consider only the uncorrelated turbulent velocities on
the centerline of the jet. This is no longer possible in the BL case where
the correlation coefficient may be everywhere different from zero (and
equal to � 0:4: this is another puzzle for which we suggest a solution
here). However, one can show that the velocity correlation has a very
small effect on the ratio R in the BL case. Therefore, we can write

r2nu ¼ ð2nu þ 1Þr2uF ; r2nv ¼ ð2nv þ 1Þ r2vF ; (18)

where r2uF and r2vF are the variances of the normal (ground) state for
the u and v coordinates (the PDFs of which are Gaussian).

In the scale-relativity approach, turbulence and its main effects
such as intermittency come from the emergence of a new acceleration
component, which can be written as Aq ¼ 6Dvð@vPvÞ=Pv.13 The
probability density Pv of QHO excited states is zero, PðviÞ ¼ 0, for
some values of the velocity vi, which implies the divergence of this
acceleration. We have shown that this result explains and accounts in
detail for many features of turbulence (e.g., large tails of acceleration
PDF, structure functions).13

The ground state, for its part, has no such zeros. We have there-
fore interpreted its manifestation as corresponding to the transition
between laminar and turbulent flow, which occurs around the edge of
the turbulent region. This means that, when approaching the edge of
the boundary layer, the turbulent fluctuations become that of the
ground state, ru ¼ ruF and rv ¼ rvF . In this regime, we expect isot-
ropy of the fluctuations, so ruF ! rvF and therefore RF ¼ ruF=rvF
! 1 and R ! 1. Experimental data fairly support this expectation,
since the turbulent intensities are found to become equal when
approaching the boundary layer edge, for g ¼ 0:8, and R to finally falls
down to R¼ 1 at g � 0:9� 1, as can be seen in Figs. 3 and 16.

The global variances will therefore be r2u ¼ hr2uii and
r2vu ¼ hr2vii, where the mean is taken on all the QHOs with fluctuating
quantum numbers. We find, finally, that

R2 ¼ r2u
r2v

¼ h2nu þ 1i
h2nv þ 1i R2

F (19)

for the PDF of nu given by the Gibbs distribution and nv ¼ f0;
1; 2; …; nug.

When the Reynolds number is large enough, this distribution is
almost flat (as a first approximation) and we can take the direct
average.

Let us first consider some selected given value of nu. From statisti-
cal physics, one expects only small quantum numbers to play a leading
role. For nu¼ 2, hnvi ¼ 1, then when RF¼ 1 (toward the BL edge),
R ¼ ffiffiffiffiffiffiffi

5=3
p ¼ 1:29; for nu¼ 3, R ¼ ffiffiffiffiffiffiffi

7=4
p ¼ 1:32; for nu¼ 4,

R ¼ ffiffiffiffiffiffiffi
9=5

p ¼ 1:34.
More generally, taking all the values of nu between 1 and ðnuÞmax ,

we find the R values given in Fig. 2. Identifying the resulting interval
ð1:29� 1:41Þ with 6 2 r, we obtain

Rth ¼ 1:356 0:03: (20)

This theoretical prediction is in satisfactory agreement with the
results of laboratory and numerical experiments in the relevant region
(far from the wall) for flat boundary layers, channels, and pipes (see
Figs. 3, 4, and 16).

This result is still reinforced by accounting for the expected Gibbs
distribution of the QHOs, which favor smaller values of the quantum
numbers. The probability for a QHO to be in a given state of quantum
number n can be written as follows:30

wðnÞ ¼ e�
1
2ð2nþ1Þ�hvxTv ; (21)

where Tv ¼ kBa2 is the equivalent of temperature in v-space,
�hv ¼ e ¼ r3v=L; x ¼ 2p=T . We have found from Mordant data that
T ¼ NTL, with N � 6, so x � 1=TL. We can now relate all these

FIG. 2. Expected distribution of values for the ratio R ¼ ru=rv when the ground
state ratio RF¼ 1. It is derived from the decomposition of the turbulent fluctuation
velocities into QHOs, for a maximum quantum number nu¼ 30. The density of
points increases for higher R values toward �1:41, but the probability of smaller
values toward �1:3 (represented by the point size) is larger according to the Gibbs
distribution. This yields an average hRi � 1:35.

FIG. 3. Experimental profiles of the ratio of turbulent intensities R ¼ ru=rv across
the turbulent region in the direction normal to the plane. The red curve results from
data provided by Shafi and Antonia,26 the black curve from Brennen,23 and the blue
curve from DNS by Spalart.27,28 We have shown as horizontal dashed lines the
interval R ¼ ð1:3� 1:4Þ expected when the ground state ratio RF ! 1 (approach-
ing the BL edge) and as continuous gray line the value R¼ 1 expected on the
edge.
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constants to Rk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15Lrv=�

p
, since rv � R2

k; r
2
a � R9

k, and
TL � R�2

k . One finally finds

�hvx
Tv

¼
ffiffiffiffiffi
15

p
pC0

kBA0NRk
; (22)

where C0 and A0 are the two Kolmogorov constants (having values
� 4� 6), C0 ¼ 2r2v=eTL and A0 ¼ r2asg=e. Finally, we find that the
constant in the Gibbs distribution is proportional to 1=Rk. This means,
as could be expected, that higher quantum numbers n contribute more
for higher Reynolds numbers. Finally, the probability can be written as

wðnÞ ¼ exp �Rk0

Rk
nþ 1

2

� �� �
; (23)

where the constant Rk0 � 100 from an analysis of Mordant’s data.
With this value we find, for fully developed turbulence with

reduced Reynolds number Rk ¼ 1000 (i.e., Re � 70 000) and maxi-
mum quantum numbers, respectively, nmax ¼ ð10; 20; 30Þ, mean val-
ues of the R ratio hRi ¼ ð1:31; 1:33; 1:335Þ. For larger values,
nmax � 50, the mean value of R stabilizes at hRi ¼ 1:34.

V. POSSIBLE SOLUTION TO THE KARMAN CONSTANT
PROBLEM

It has been argued by Landau and Lifchitz14 that in the flat plate
boundary layer, the flow is characterized by no constant parameter of
length that would allow to determine the scale of the turbulent flow. In
consequence, he concludes that the main scale of turbulence is deter-
mined by the distance itself, i.e., the only available natural scale in the
infinite flat plate problem is the height y. Therefore,

Lx ¼ y: (24)

This theoretical expectation is supported by Tennekes and Lumley
analysis of the link between Reynolds stress and vortex stretching.4

They argue that the existence of a Reynolds stress requires that the
velocity fluctuations u and v be correlated. The eddies are continuously

losing energy to smaller eddies, so they need shear to maintain their
energy: the most powerful eddies thus are those that can absorb energy
from the shear flow more effectively than others. They conclude, in
agreement with Townsend31 and Bakewell and Lumley,32 that the
eddies that are most effective in both maintaining the u; v correlation
and in extracting energy from the mean flow are vortices whose princi-
pal axis is roughly aligned with that of the mean strain rate. These
three dimensional vortices with vorticity x are stretched by the rate of
strain S with x parallel to S along a direction making an angle of
� 45� with the flat plate (see their Fig. 2.5 and p. 41).

Experimental observations of these eddies clearly support this
expected angle of 45� (see, e.g., Refs. 33 and 34) and therefore the evi-
dence for the fact that the fundamental length scale is Lx¼ y.

In the scale-relativity approach to turbulence, the fundamental
constant �hV in velocity-space is identical (or at least proportional) to
the K41 rate of transferred energy e. This implies the following
relation:

�hV ¼ r3u
Lx

¼ r3v
Ly

; (25)

which relates the anisotropy of the velocity turbulent fluctuations with
the space anisotropy. Therefore,

Ly
Lx

¼ r3v
r3u

¼ 1
R3

: (26)

Finally, the length scale along the transverse direction is, therefore,

Ly ¼ y
R3

: (27)

The mean streamwise velocity is solution of the differential equation

dU
dy

¼ v?
Ly

¼ R3 v?
y

; (28)

which is integrated under the form of the well-known log-law of the
mean velocity profile given by

U ¼ v?
j
ln

y
y0
; (29)

in which j is the Karman constant for which we have therefore
obtained the following theoretical prediction:

j ¼ 1
R3

: (30)

From the previously theoretically estimated range for R ¼ ru=rv
¼ 1:356 0:03, we can now derive the possible values of the Karman
constant:

j ¼ 0:4056 0:025; (31)

which is in good agreement with its measured values.
Actually, statistical analysis of the available data6 shows that the

differences between the three canonical flows could be much larger
than the uncertainty in the extracted overlap parameters. This suggests
that the von Karman coefficient may not be strictly universal and
exhibits a small dependence on the flow geometry.

The mean value of j has been found to be 0.37, 0.39, and 0.41,
respectively, for channels, flat plate boundary layers, and pipes.6

FIG. 4. Comparison between the streamwise turbulent intensity profile ruðgÞ in a
channel (blue curve) and the scaled normal turbulent intensity R rvðgÞ, for three
values of R ¼ ð1:30; 1:35; 1:40Þ (magenta, brown, and green curves), from the
DNS data of Kim et al.29 This supports our theoretical expectation according to
which ru � 1:35 rv in the central region of the channel, far from the walls (which
lie at g ¼ 6 1).
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These values correspond to, respectively, R ¼ 1:39; 1:37, and 1.35 for
RF¼ 1, which clearly lie in the range expected from the present
v-Schr€odinger/QHO approach.

More generally, Nagib and Chauhan6 have found a full range of
measured values, j ¼ 0:35� 0:45. Smart9 has reported the existence
of atmospheric measurements showing j values as low as 0.3535 and
as high as 0.4636 and of direct numerical simulation of boundary layer
turbulence revealing j values that can range from 0.3846 0.00437 to
0.452.38

The full range of observed j values, 0:35� 0:46, thus exactly cor-
responds to just the full range of possible R values (for RF¼ 1), which
lie between Rmax ¼

ffiffiffi
2

p ¼ 1:414 yielding j ¼ 2�3=2 ¼ 0:35 and Rmin

¼ ffiffiffiffiffiffiffi
5=3

p ¼ 1:29 yielding j ¼ ð3=5Þ3=2 ¼ 0:46.

VI. SOLUTION FOR THE REYNOLDS STRESS PROFILE
IN THE NORMAL DIRECTION

Neglecting small terms, the RANS equation for the boundary
layer yields the following general result:4,5

p ¼ p0ðxÞ � r2v : (32)

Therefore, the pressure in the potential of the v-Schr€odinger equation
can be replaced by the opposite of the Reynolds normal stress. We
denote by RF the ratio of turbulent intensities in the ground state and
by Gv the ratio of the velocity fluctuation variance over that of the
ground state:

RF ¼ ruF
rvF

; Gv ¼ r2v
r2vF

: (33)

For QHOs, r2v ¼ ð2nv þ 1Þr2vF in a given excited state of probability
PðnvÞ such that

P
PðnvÞ ¼ 1, so Gv ¼

P
PðnvÞðð2nv þ 1Þ, where

PðnvÞ is given by statistical physics.30
We call qF the coefficient of correlation of velocities in the ground

state and Lv the integral length scale in the normal direction. Then, the
kv equation reads10

kv ¼ �@y@yr
2
v ¼ H

R2
F þ q2F

R2
Fð1� q2FÞ2

r2v; (34)

where

H ¼ G2
v

4L2v
: (35)

One of the main specificities of the turbulent BL with respect to
the jet lies in the nature of the integral length scale Lv. As recalled
above, it is proportional to the normal distance, Lv ¼ j y, the coeffi-
cient of proportionality being just the Karman constant we have theo-
retically predicted above to be j ¼ 1=R3 � 0:4.

Therefore, the kv equation in the FPTBL case becomes

y2 @y@yr
2
vðyÞ þ B0 r

2
vðyÞ ¼ 0; (36)

where

B0 ¼ G2
v

4j2
ð1þ q2F=R

2
FÞ

ð1� q2FÞ2
: (37)

This equation is doubly scaling, i.e., invariant under scale factors on
both y and rv. It can then be equivalently written in terms of the

dimensionless normal distance g ¼ y=d. Under the approximation
B0 � cst, the solution of this equation reads

r2v ¼ A
ffiffiffi
g

p
sinðaP ln gÞ; (38)

where aP ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B0 � 1=4

p
. This function shows interesting multi-scale

properties reminiscent of the two-scale nature of the flat plate bound-
ary layer4,5,14 (see Appendix A).

It presents a peak at a distance gP, in terms of which the coeffi-
cient aP can be written to a good approximation as
aP ¼ �0:78313þ 8:108 gP � 9:295 g2P , valid for gP in the range
ð0:17� 0:25Þ. An improved expression for aP is given in Appendix A.

As can be seen in Fig. 5, this theoretical prediction is in good
agreement with the results of laboratory and numerical experiments for
gP � 0:15� 0:20 in turbulent plane boundary layers. In the case of
channels and pipes, the edge of the boundary layer g¼ 1 for
y ¼ dðxÞ is replaced by the center plane of a channel of width 2h at
d ¼ h and the centerline of a pipe of radius r at delta¼ r. As expected,
the behavior of the various functions near g¼ 1 becomes different from
the free case. We show in Fig. 6 that our theoretical prediction remains
nevertheless in good agreement with experiments up to g � 0:7.

Introducing the turbulent intensity amplitude lB (unknown at
this stage) and the (known) wall-friction velocity v?, the full solution
reads

r2v ¼ l2B v
2
?

ffiffiffiffiffi
g
gP

r
sinðaP ln gÞ
sinðaP ln gPÞ

: (39)

The situation is therefore comparable to the turbulent round jet case10

where we have found in the central region of the jet r2v
¼ l2 U2

C cos
ffiffiffi
3

p
g=a

� �
, where g ¼ r=x and UC is the mean axial veloc-

ity on the jet centerline. In both cases, we have derived from the kv
equation a generic Reynolds stress profile, while the full solution
depends also on a numerical amplitude factor (lB and l) and on
another numerical factor characterizing the profile shape (gP and a).
These numerical factors can be theoretically derived from other equa-
tions, as we shall now see.

FIG. 5. Comparison between our theoretical prediction of the Reynolds stress pure
profile r2v=l

2
B in a flat plate turbulent boundary layer (red dashed curve, gP ¼ 0:2),

with some examples of its experimental and DNS measurements. Blue points and
curve: Brennen;23 magenta: Shafi and Antonia;26 beige: DNS by Spalart;27 green:
Erm and Joubert.24
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VII. THEORETICAL PREDICTION OF THE TURBULENT
INTENSITY AMPLITUDE

We have found above that the kv equation yields a solution for
the pure turbulent intensity profile that agrees with experimental mea-
surements. However, at this level of the analysis, its amplitude remains
unknown. As we shall now see, the amplitude lB can be obtained from
the other equations derived from the QHO v-Schr€odinger equation.
The method is the same as that used for turbulent jets,10 but now it is
applied to the boundary layer.

A. Decorrelation of velocities for QHOs

A direct approach for obtaining a theoretical solution for the val-
ues of lB consists of fully solving the equations for the excited states.
This can be done by performing a rotation by an angle h to a coordi-
nate system ðU; VÞ where the turbulent velocities become decorre-
lated. One finds this decorrelation angle to be given by

tanð2hÞ ¼ 2kuv
kv � ku

¼ 2ruv
r2u � r2v

: (40)

Setting T ¼ tanð2hÞ and A ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ T2

p
, one obtains

C ¼ cos h ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ A
2

r
; S ¼ sin h ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1� A
2

r
: (41)

The new coefficients kU and kV in the QHO potential read

kU ¼ kuC
2 � 2kuvCSþ kvS

2; kV ¼ kvC
2 þ 2kuvCSþ kuS

2: (42)

Since kUV ¼ 0, the two variables are now separated and the expres-
sions of the Reynolds stresses are easily derived from the standard
QHO relations:

r2U ¼ ð2nu þ 1Þ �hV
2
ffiffiffiffiffi
kU

p ; r2V ¼ ð2nv þ 1Þ �hV
2
ffiffiffiffiffi
kV

p : (43)

Finally, we obtain the expressions for the three Reynolds stresses in the
initial coordinate system:

r2u ¼ C2r2U þ S2r2V ; r2v ¼ S2r2U þ C2r2V ; ruv ¼ CSðr2U � r2VÞ:
(44)

B. Equation for the amplitude

This system cannot be directly used because of the problem
encountered with the ku equation. In the absence of a source term
(until now unknown), it corresponds to a repulsive harmonic oscilla-
tor, which seems to contradict the laboratory results and those
obtained from numerical experiments.

A solution to this problem consists of using the relation
ru ¼ R rv and the fact that ruv is known in order to calculate ku,
instead of using its direct expression ku ¼ �@x@xr2v . One obtains

ku ¼ kv � kuv
r2v
ruv

ðR2 � 1Þ: (45)

Applying this method to the pure normalized profiles (denoted
by the subscript o), this yields the following new expressions:

kuo ¼ kvo � kuvo ðR2 � 1Þ l2 r2vo
ruvo

; T ¼ 2ruvo
l2ðR2 � 1Þr2vo

; (46)

kUo ¼ kvo � kuvo C
l2ðR2 � 1Þr2vo

ruvo
C þ 2S

� �
; (47)

kVo ¼ kvo � kuvo S
l2ðR2 � 1Þr2vo

ruvo
Sþ 2C

� �
: (48)

As previously seen, the generalized macroscopic Planck constant reads

�hV ¼ r3v
Lv0

; (49)

where the length scale must be proportional to y: Lv0 ¼ j0 y. It
depends almost linearly on the axial distance since y ¼ d g ¼ aB x g.
We have shown in Sec. III A that aB ¼ d0R�1=7

x , then it depends
slightly on x as x�1=7. We find that this dependence can be neglected,
so we only describe the Reynolds number dependence considering var-
ious values of aB in the range ð0:03� 0:06Þ corresponding to
Rx ¼ ð105 � 103Þ.

We finally obtain an implicit equation for the turbulent intensity
amplitude lB,

Q¼ 2j0 aB gx
ruvo
l2Br

3
vo

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

T2

r
nuþ1

2

� �
1ffiffiffiffiffiffiffi
kUo

p � nvþ1
2

� �
1ffiffiffiffiffiffiffi
kVo

p
" #�1

¼ 1: (50)

This equation can be theoretically solved on the basis of our previously
acquired knowledge of the pure profile r2voðgÞ and of the Reynolds
shear stress ruvo. It therefore depends on the quantum numbers nu
and nv, on the parameters gP, R, aB, and lB, and on the scaled radial
distance g ¼ r=x. It is solved by the values of gP, R, aB, and lB, which
ensure a constant radial profile QðgÞ ¼ cst, provided they exist, and is
expected to yield a relation lB ¼ lBðgP; R; aBÞ. The value of j0 can
be subsequently derived from the equation Q¼ 1.

As recalled above, statistical physics implies that the states with
the smallest quantum numbers are the most probable. However, we
have also seen that, in our framework, the ground state nu ¼ nv ¼ 0
cannot correspond to a fully turbulent state. This is due to the fact that

FIG. 6. Comparison between our theoretical prediction of the Reynolds stress pro-
file r2v in a turbulent boundary layer (red dashed curve, gP ¼ 0:2), with the result
for a channel from DNS by Kim et al.29 The two black curves correspond to the up
and down parts of the channel. The walls lie at g¼ 0 and the centerplane at g¼ 1.
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it is devoid of velocity values for which PvðviÞ ¼ jwvj2ðviÞ ¼ 0, while
we have identified the zeros of the velocity PDF and the supplementary
acceleration component they involve as the source of the main turbu-
lent characteristics.12,13 Therefore, the ground state is considered to
apply only in the turbulent–laminar transition, at the interface between
the two regimes.

As a consequence, the most probable state is given by the quan-
tum numbers nu¼ 2, nv¼ 1, the other states contributing only in a
minor way. We have therefore specifically applied the above equation
Q ¼ cst to this case.

Regarding the Reynolds normal stress pure profile, we have used
our theoretical solution normalized to one at maximum,

r2vo ¼
ffiffiffiffiffi
g
gP

r
sinðaP ln gÞ
sinðaP ln gPÞ

; (51)

where we recall that aP ¼ �0:78313þ 8:108 gP � 9:295 g2P .
As for the Reynolds shear stress, we have used the solution of the

RANS and continuity equations given by Eq. (17), which can be writ-
ten as follows to a good approximation:

ruv ¼ v2? 1� g� aB
j2

g ln g

� �
: (52)

We have also considered the usual approximative solution,4 ruvo ¼ 1
�g, and a polynomial fit of the Reynolds shear stress measurement by
Erm and Joubert,23 which can be written as ruv ¼ 0:9838þ 0:478g
�2:294g2 þ 0:872g4. As we shall see, they yield solutions that frame
the more exact solution and are compatible with it.

C. Numerical solution by optimization and fit

We have calculated QðR; lB; aB; gP; jÞ for a large range of
parameter values, R ¼ ð1:2� 1:6Þ; lB ¼ ð0:8� 1:6Þ; aB ¼ ð0:03
�0:06Þ; gP ¼ ð0� 0:4Þ, and j ¼ ð0:37� 0:43Þ.

Examples of Q profiles obtained are given in Fig. 7, which dem-
onstrates the existence of very precise solutions for the equation Q¼ 1.
The residual standard deviation, rQ, with respect to a flat profile

QðgÞ ¼ 1 has been calculated for each set of parameters in the range
g ¼ 0:3� 0:75. The smallest values of this dispersion reach
rQ < 0:0002.

In a run taking j ¼ 0:4, a fit of the parameter subset such that
rQ < 0:002 yields with a high statistical significance (Student’s t> 80
for the R coefficients and>35 for the others):

lB ¼ 9:692� 10:70Rþ 3:14R2 þ 1:64aB þ 4:73gP � 18:54g2P:

(53)

The dependence of lB on aB and gP is weak, yielding only small cor-
rections to the mere function of R (see Fig. 8), which can be written as

lBðRÞ ¼ R0 � 2:26 ðR� R0Þ þ 3:11 ðR� R0Þ2; (54)

where R0 ¼ 1:344 is the value for which lB ¼ R. This value is just the
central value predicted from the QHO Schr€odinger equation (Ref. 10
and Sec. IV). This result is illustrated in Fig. 9, where we have plotted
the values of lB in function of R for the various parameters that satisfy
rQ < 0:002. In this figure, the values of lB have been corrected for the
small aB and gP dependence according to the above fit Eq. (53).

From the predicted values of R ¼ 1:346 0:04, we therefore
derive a theoretical prediction for the range of possible lB values,
lB ¼ 1:366 0:09, leading to the final conclusion that lB � R � 1:35.

We give in Appendix B the results of our numerical calculations
and their fit for different choices of the function ruvðgÞ. The agree-
ment between the slopes of the linear term in all cases is remarkable.
Only the value for which lB ¼ R changes slightly from 1.33 to 1.35
then 1.38, which remains in the theoretically predicted range of
R ¼ ru=rv.

Finally, the value obtained for the constant j0 is compatible with
j0 ¼ 1, although with a large dispersion (we find j0 ¼ 1:04 with a
standard error rj0 ¼ 0:30). This means that the length scale entering
into the definition of the v-Planck constant is just Lv0 ¼ j0 y � y.

FIG. 7. Examples of Q profiles demonstrating that there exists values of the param-
eters ðR; aB; gP ; lBÞ for which Q � 1 in a large interval g � ð0:2� 0:8Þ. The
standard deviations for these solutions on the range ð0:3� 0:75Þ is rQ < 0:0003.
The inset is a zoom by a factor � 300 showing the detailed profiles of these
solutions.

FIG. 8. Relation lBðRÞ solving the equation Q ¼ cst [Eq. (50)]. The rv profile input
in this equation is the theoretical solution of the kv equation, while ruv is the solution
of the RANS and continuity equations Eq. (52). The different continuous curves cor-
respond to the range of possible values for aB and gP. The equality lB ¼ R is
reached for R0 ¼ 1:344. The dashed curves correspond to two other choices, the
standard simple solution ruv ¼ 1� g and a fit of (EJ)24 data. It is compared to the
range of predicted values for R from quantized QHOs, R ¼ 1:346 0:04, yielding
possible values for lB in the range ð1:28� 1:45Þ.
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D. Analytical solution by power series expansion

We have obtained an approximate analytical solution for the
function lBðR; aB; gP; jÞ by performing a power series expansion of Q
in function of g and of the various parameters. We set n ¼ g� g0;
r ¼ R� R0; m ¼ lB � lB0; a ¼ aB � aB0; p ¼ gP � gP0 and k ¼ j
�j0. The resulting expression of Q ¼ Aþ B nþO½n2	 around
ðR0; lB0; aB0; gP0; j0Þ ¼ ð1:35; 1:35; 0:045; 0:16; 0:40Þ to first order
in n and to second order in the other parameters is given in
Appendix C, Eq. (C5).

Then, we express the theoretically predicted constancy of Q by
requiring the cancellation of the linear term, B¼ 0. This results in the
following second order power series expression for m ¼ lB � 1:35:

m ¼ ð�0:0336þ 1:596a� 0:694p� 0:357k� 13:04akþ 1:29k2

� 14:90apþ 1:83kpÞ þ ð�2:161� 5:079aþ 1:297p

þ 0:421kþ 62:82ak� 6:75k2 þ 48:91ap� 9:85kpÞ r
þ ð4:317� 39:45a� 2:18p� 6:36k� 177:3akþ 39:7k2

� 249:5apþ 44:8kpÞ r2: (55)

This function is plotted in Fig. 10 for various values of the parameters.
It is in good agreement with the fit of the optimized numerical results,
as it can be seen in Figs. 9 and 23.

E. PDFs of parameters

The equation Q¼ 1 provides us with a relation lB
¼ lBðR; gP; aB; jÞ and also with PDFs for some of the parameters,
and therefore with possible theoretical predictions of their values.
Indeed, as we shall see, while we have calculated Q for a uniform distri-
bution of the parameters in large intervals, the values of these parame-
ters which yield Q ¼ cst with a small standard deviation rQ ! 0 are
no longer uniformly distributed. They show either limits not explained
by the limits of the initial range or, in some cases, well-defined narrow
peaks of probability, allowing a theoretical prediction of the most

probable values of the parameters and of the standard deviation
around theses probability peaks.

1. PDF of aB

We have performed a specific numerical run for studying the
effect of the parameter aB ¼ d0 R�1=7

x , which defines the BL thickness
dðxÞ ¼ aB x. We have taken aB values in the range 0:002� 0:24
(98290 values of the parameters). The resulting PDF depends of the
limit chosen for rQ. When rQ < 0:01, one finds a PDF increasing
toward small aB values (large Reynolds numbers) with a peak at aB
¼ 0:006 (Rx � 1010) and a slower decrease for aB > 0:03 (Rx < 105).
When we take the values of parameters such that rQ < 0:003, one
finds a probability peak at aB ¼ 0:07 (Rx � 300), which is of the order
of magnitude of the smallest critical Reynolds number for this kind of
flow (see Fig. 11).

Finally, one can ask whether a theoretical prediction is possible
for the constant d0. We have therefore directly plotted the PDF of Rx
for d0 ¼ 0:16, as shown in Fig. 11. We find, as could be expected, a flat
distribution for large enough Reynolds numbers, but also a very clear
transition around Rx¼ 1, which can be interpreted as a theoretical pre-
diction of our chosen value for d0.

2. PDF of the ratio R of turbulent intensities

The PDF of R is shown in Fig. 12 (left). One finds 1:3< R
< 1:48 directly from Q¼cst using neither the value R¼ ffiffiffiffiffiffiffi

5=3
p � 1:29

for nu¼2 and nv¼1 nor the mean result from QHOs, hRi� 1:35. The
PDF of lB is rather flat since it just reflects that of R and its relation in
function of R, lB � 1:35� 2:25 ðR� 1:35Þ.

3. PDF of gP

In addition, we also find a theoretical prediction for the possible
values of gP, which is such that gP < 0:24 with a PDF showing a peak
at gP � 0:175 for rQ < 0:007.

FIG. 9. Values of ðR;lBÞ solving the equation Q ¼ cst [Eq. (50)], where lB is cor-
rected for the small dependence on aB and gP. The rv profile input in this equation
is our theoretical solution of the kv equation Eq. (38), while the ruv profile is the
solution of the RANS and continuity equations Eq. (52). The red continuous curves
are the resulting fit yielding the searched relation lB ¼ lBðRÞ, which is the solution
of the equation Q¼ 1. It is indistinguishable in the relevant range
R � ð1:29� 1:41Þ from the series analytic solution given in Eq. (55).

FIG. 10. Plot of the analytical function m(r), where R ¼ R0 þ r and lB ¼ lB0 þ m
with R0 ¼ lB0 ¼ 1:35, derived from the equation Q ¼ cst, for various values of the
parameters, as given in Eq. (55). The different curves correspond to a ¼ ð�0:02;
0; 0:02Þ, i.e., aB ¼ ð0:025; 0:045; 0:065Þ (blue curves), p ¼ ð�0:04; 0; 0:04Þ, i.e.,
gP ¼ ð0:12; 0:16; 0:20Þ (red curves), and k ¼ ð�0:03; 0; 0:03Þ, i.e.,
j ¼ ð0:37; 0:40; 0:43Þ (black curves). The central values have been slightly dis-
placed for clarity of the plot. The green line shows the values for which lB ¼ R.
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An example of the PDF of gP is shown in Fig. 12 (right). It shows
a well-defined peak of probability. However, contrary to what happens
for the other parameters, this peak depends on the chosen limit rQL
and varies from gP ¼ 0:12 (rQ < 0:002, 490 values) to gP ¼ 0:2
(rQ < 0:01, 6432 values). These values agree with the range observed
for gP in laboratory and numerical experiments on boundary layers.

4. PDF and new theoretical prediction of the Karman
constant

We show in Fig. 13 an example of the QðgÞ profiles obtained by
varying j for fixed values of the other parameters. The obtained behav-
ior suggests that a new theoretical prediction for j is possible from the
mere equation Q¼ 1, without resorting to the general argument used
in Sec. V. Actually, the new result obtained here (as we shall see, a
probability peak at j ¼ 0:4) provides us with a full justification of this
argument.

In order to derive a new possible theoretical prediction for the
Karman constant j, we have performed another run with an enlarged

interval for the initial values 0:1 < j < 0:5 (with 116480 different
combinations of the parameters). For this run, the lBðRÞ function
obtained for rQ < 0:001 reads

lB ¼ R0 � 2:09 ðR� R0Þ þ 3:83ðR� R0Þ2; (56)

with R0 ¼ 1:353. It is in good agreement with the previous determina-
tions of this function.

The resulting PDF of j is given in Fig. 14. It shows a well-marked
probability peak at j ¼ 0:40 with width60.02, which is just the range
of its experimentally observed values. This is a remarkable result in
support of our direct derivation of its value from the turbulent inten-
sity ratio j ¼ 1=R3 � 0:4. The effect of the Karman constant in the
function Qðj; gÞ ¼ 1 comes from its intervention (as 1=j2) in the
solution of RANS equations given by Eq. (52) for ruv. It is itself a man-
ifestation of the mean velocity contribution in the RANS equation and,
therefore, of the log-law of the wall for the streamwise mean velocity
U. In other words, it is the very Karman constant j of the log-law for
which we have found here a theoretical prediction, not only a second-
ary effect of its value.

FIG. 11. Left figure: PDF of the boundary layer thickness parameter aB ¼ 0:16R�1=7
x (with dðxÞ ¼ aB x) obtained from the constraint QðaB;lB;R; gP ;j; gÞ ¼ cst by select-

ing values of the parameters such that the dispersion around Q¼ 1 is rQ < 0:003. Right figure: direct PDF of the Reynolds number Rx under the same conditions, showing a
clear transition around Rx¼ 1 for d0 ¼ 0:16.

FIG. 12. Left figure: PDF of the values of the ratio R ¼ ru=rv satisfying the equation QðR; gÞ ¼ 1 with a standard deviation rQ < 0:002. The initial values were uniformly dis-
tributed between 1.2 and 1.6. Right figure: PDF of the values of gP, which is the position of the maximum of r2v in our theoretical solution Eq. (51). This PDF is obtained from
rQ < 0:007 from initial values of gP uniformly distributed between 0 and 0.4.
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This result supports a theoretical numerical value 0.46 0.03 of
the Karman constant but not yet the full and more general relation
j ¼ 1=R3. We have therefore constructed the PDF of the variable
g ¼ jR3 from the same set of initial values. The result is given in
Fig. 15 for rQ < 0:001 and shows a well-defined probability peak
around g¼ 1, i.e., j ¼ 1=R3. When the chosen limit rQL increases, one
finds mean values slightly smaller than 1, probably as a result of the
bias introduced by keeping values of Q 6¼ cst. However, the predicted
PDF is, strictly, the limit when rQ ! 0 of the rQ dependent PDFs. For
rQ < 0:0005, we find jR3 ¼ 0:9946 0:039 (error on the mean) with
a dispersion rg ¼ 0:146.

We conclude that the macroscopic QHO v-Schr€odinger equation
derived in the scale-relativity theory not only predicts the typical value
j ¼ 0:4 and its possible fluctuations 60.03 but also the full relation
j ¼ 1=R3 (that we previously derived from a general physics
argument).

F. Channels and pipes

Channels and pipes deserve a special treatment since in their case
the equation Q¼ 1 takes a different form. Indeed, the thickness of the
turbulent region is no longer dependent on x but must now be consid-
ered constant and equal to the half-distance between the plates for
channels and to the radius for cylindrical pipes. Therefore, g ¼ y=d no
longer depends on x, so the second pressure equation vanishes, kuv¼ 0.
In this case, one finds a simplified expression

Qo ¼ 2 d g
ffiffiffiffiffiffi
kvo

p
ðnu � nvÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

T2

r
ruvo
l2B r

3
vo
; (57)

while 2d g
ffiffiffiffiffiffi
kvo

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a2P

p
rvo and ruvo ¼ qR l2B r

2
vo.

Consequently, setting dn ¼ nu � nv, one finds an explicit solution for
lB given by

l2B ¼ ð1þ 4a2PÞ1=2

ðQo=dnÞ2 � ða2P þ 1=4Þð1� R2Þ2
	 
1=2 ruvo

r2vo
; (58)

and for the correlation coefficient of velocities,

q ¼
ðQo=dnÞ2 � ða2P þ 1=4Þð1� R2Þ2
h i1=2

R ð1þ 4a2PÞ1=2
: (59)

This expression for q is independent of the scaled distance g ¼ y=d to
the wall, so we theoretically predict that the velocity correlation coeffi-
cient should be constant in the range relevant to our solutions for the
Reynolds stresses (0:2 < g < 0=7).

Another difference for channels and pipes compared with plane
boundary layers is the expression for the ruv profile. Its expression
according to Lee and Moser37 is 1� yþ=Res � 1=jyþ, which in terms
of large scale variables becomes

ruvo ¼ 1� g� 1
jRes g

: (60)

FIG. 13. Profiles of the function QðgÞ along the direction normal to the wall obtained
by varying the Karman constant j for fixed values of the other parameters. The
theoretical expectation is a flat profile Q¼ 1. The profiles are plotted for
j ¼ ð0:37; 0:38; 0:39; 0:40; 0:41Þ from bottom to top, showing a flat profile for
j ¼ 0:40 in the range g � ð0:4� 0:8Þ. The other parameters are in this case
aB ¼ 0:045; lB ¼ R ¼ 1:345; gP ¼ 0:15.

FIG. 14. PDF of the values of the Karman constant j satisfying the equation
Qðj; gÞ ¼ 1 with a standard deviation rQ < 0:008. The initial values of j were
uniformly distributed between 0.1 and 0.5.

FIG. 15. PDF of the variable g ¼ jR3 satisfying the equation Qðj; gÞ ¼ 1 with a
standard deviation rQ < 0:001. The initial values of j were uniformly distributed
between 0.1 and 0.5 and those of R between 1.25 and 1.43. The mean value is
g ¼ 0:9826 0:014 (error on the mean) with a standard deviation rg ¼ 0:157, thus
strongly supporting the relation j ¼ 1=R3 to within � 1r.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 065133 (2024); doi: 10.1063/5.0212386 36, 065133-12

Published under an exclusive license by AIP Publishing

 21 June 2024 15:01:21

pubs.aip.org/aip/phf


However, we encounter a new problem here, since we expect
Q ¼ j0 Qo ¼ 1 while the exact value of j0, which we have found to be
close to one for boundary layers, is unknown. Contrary to the bound-
ary layer case, we cannot use here the constraint Q ¼ cst. Using
j0 ¼ 1, we recover the same kind of results as in the BL case, but our
theoretical expectation for lB becomes less precise in the channel and
pipe cases. We intend to perform a specific study of these flows in a
forthcoming work (Nottale and Lehner, in preparation).

VIII. SIMILARITY BETWEEN THE TURBULENT JET AND
THE TURBULENT BOUNDARY LAYER

Another way to obtain more directly the amplitude of the
Reynolds stress along the direction normal to the wall comes from the
existence of a deep analogy between the turbulent jet and the boundary
layer. Using this universality, we can directly use the result already
obtained for the jet10 and apply it after scaling to the FPBL.

A. Universality of Reynolds stress profiles

Let us compare the theoretical solutions for the Reynolds shear
stress, derived from the RANS and continuity equations, and for the
radial/normal Reynolds stress, derived from the QHO v-Schr€odinger
equation, in the two cases of turbulent round jet and turbulent flat
plate boundary layer (which can be generalized to channels and pipes).

We have obtained in Ref. 10 precise solutions for the mean veloc-
ities U and V and for the Reynolds shear stress ruv ¼ gU2 � U V in
the turbulent round jet, by matching inner solutions to the Landau
exact laminar outer solution.14 The radial Reynolds stress has been the-
oretically derived as solution of the kv equation:

r2Jv ¼ l2 U2
C cos

ffiffiffi
3

p
z

1þ a4 z4

 !
; (61)

where UC is the mean centerline velocity and z ¼ r=d ¼ r=ða xÞ is the
normalized radial distance and where the amplitude l ¼ ð0:20
6 0:015Þ and the coefficient a4 ¼ 0:18 have also been theoretically
derived from the QHO v-Schr€odinger equation.

In the present paper, we have obtained solutions for the same
quantities in the turbulent boundary layer. These solutions are

expressed in terms of the wall-friction velocity v? ¼
ffiffiffiffiffiffiffiffi
r=.

p
as r2v

¼ l2B v
2
? r

2
vo and ruv ¼ v2? ruvo. The boundary conditions are very dif-

ferent between the jet and the boundary layer as regards mean veloci-
ties, whose variations are reversed, and as regards the central region,
since the flow behavior in the BL when y ! 0 becomes strongly
dependent on the viscosity. However, both systems come under the
boundary layer approximation of the RANS equations and, in the
scale-relativity approach to turbulence developed here, are described
by the same v-Schr€odinger equation.

We therefore expect the two flows to be similar in regard to the
turbulent fluctuations in the median and edge regions once proper
scaling is applied.

First, the distance to be used is naturally the distance ratio to the
edge z ¼ g ¼ y=d ¼ y=ðaB xÞ for the BL and its equivalent in the jet,
z ¼ r=d ¼ r=ða xÞ. The analogy is made with the turbulent round jet
since its scaling in function of the radial distance is�x as the turbulent
BL while the plane jet would be� ffiffiffi

x
p

, like the laminar BL.
Second, we expect from our analysis that a velocity vJ? could be

defined for the turbulent jet in analogy with the BL velocity v?. Such a
characteristic velocity should be such that r2v ¼ l20 v

2
J?r

2
vo and ruv

¼ v2J?ruvo for the jet.
We show in Fig. 16 a comparison of the theoretically predicted

profiles after such a double scaling, for vJ? ¼ 0:145UC . An excellent
agreement is indeed obtained between the r2v profiles in the range
z � ð0:2� 0:9Þ, i.e., in about the outer 3/4th of the turbulent region.
Since p ¼ �r2v in both cases, this means that the potential in the
v-Schr€odinger equation is the same in this range. This result defini-
tively proves the identity of the turbulent fluctuation equations in the
median region of the turbulent domain. Laboratory and numerical
experiments fairly support this result, as can be seen in the examples of
Fig. 17.

B. Consequence: Prediction of BL turbulent intensity
amplitude from jet amplitude

This remarkable similarity between the jet and the boundary layer
turbulent fluctuations allows one to directly derive the amplitude of

FIG. 16. Comparison between the theoretically predicted Reynolds stresses in the free turbulent jet (black curves) and in the flat plate turbulent boundary layer (red curves).
The Reynolds shear stresses ruv are solutions of the continuity and RANS equations,10 for the jet and Eq. (52) for the boundary layer. The red dashed curve is a polynomial fit
of (EJ) data. The Reynolds stresses r2v are solutions of the QHO v-Schr€odinger equation: stretched cosine solution Eq. (61) for the jet and Eq. (51) for the boundary layer. The
blue dashed curve is the cosine solution without the stretching term, which is valid in the jet central region. A double scaling is applied in order to manifest the similarity of the
solutions (see the text).
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the BL turbulent intensity lB along the direction normal to the plate
from the jet radial amplitude lJ. It reads

lB ¼ lJ
rJvo
rBvo

ffiffiffiffiffiffiffi
rBuv
rJuv

s
; (62)

where the index J stands for the jet and B for the boundary layer.
Using our solutions for the jet10 and for the boundary layer (pre-

sent paper), we find a theoretical prediction for the ratio lB=lJ , which
is shown in Fig. 18 for various values of the parameters. As expected, it

is almost constant in function of the variable z ¼ r=ax (round jet) and
z ¼ y=aBx (BL) in the relevant range z ¼ ð0:3� 0:8Þ. Its value,
lB=lJ � 6� 7, yields a theoretical explanation for the observed ratio
ð0:14� 0:15Þ between vJ? andUC (see Fig. 17).

From the theoretically predicted range lJ ¼ 0:206 0:015,10 one
obtains lB ¼ 1:356 0:15, in good agreement with its direct
determination.

IX. THEORETICAL PREDICTION OF THE VELOCITY
CORRELATION COEFFICIENT

One of the main mysteries of turbulence is the universality of the
correlation coefficient of velocities, which is known to be q � 0:4 for
all shear flows.4,5 We have given a theoretical explanation for this value
in the turbulent round jet case, where we have found q ¼ 1=R3.10 We
are now in position to generalize this result to many other flows, such
as plane boundary layers, channels, and pipes.

The first and shortest way to obtain the result q ¼ 1=R3 � 0:4
consists of using the similarity found above between the turbulent
round jet and the plane boundary layer, which implies that the jet
result is also valid for boundary layers. The new information brought
here is the identity between the Karman constant and the velocity cor-
relation coefficient, both being given by R�3 to lowest order, in agree-
ment with their common experimentally measured numerical value
� 0:4.

There is another direct way toward this result: the general form
given to the Reynolds stresses using the characteristic velocity v?,
which we have shown to be valid for both the turbulent jet and bound-
ary layers (see Fig. 17), allows us to now solve the problem in a fast
way.

Indeed, the coefficient of correlation of velocities is given by

q ¼ ruv
ru rv

¼ ruv
R r2v

¼ 1
R l2B

ruvo
r2vo

: (63)

With the normalized Reynolds stresses ruvo � 1 and r2vo � 1 around
z � 0:2 (by construction), we get q � 1=ðR l2BÞ, i.e., to lowest order,
knowing that R � lB � R0 ¼ 1:35,

q � 1
R3
0
� 0:4; (64)

which is the well-known universal experimental value of the correla-
tion coefficient for all shear flows.4 This value is therefore now theoret-
ically established for round jets, plane boundary layers, channels, and
pipes (Ref. 10 and present paper).

In a more elaborate way, using our explicit expressions for the
Reynolds stresses, the coefficient of correlation of velocities reads as
follows for the flat plate turbulent boundary layer:

q ¼ ruv
R r2v

¼
ffiffiffiffiffi
gP

p
sinðaP ln gPÞ 1� g� aB

j2
g ln g

� �
R l2B

ffiffiffi
g

p
sinðaP ln gÞ : (65)

Using the analytical expression we have found for lB, we obtain quasi-
constant profiles q � 0:4 for the coefficient of correlation in the rele-
vant interval g � ð0:2� 1Þ, as shown in Fig. 19, with variations
<� 6 0:03 depending on the values of the parameters.

In another way to get this result, the equation Q ¼ cst can also be
directly reformulated in terms of the correlation coefficient q.

FIG. 17. Comparison between the Reynolds stresses in the free turbulent jet and in
the flat plate turbulent boundary layer. The blue, magenta, and brown continuous
lines are measurements of, respectively, r1=2uv , rv, and ru in the free jet by
Panchapakesan and Lumley (PL),39 Hussein et al. [Hussein, Capp, George
(HCG)],40 and their mean. They have been normalized by a velocity vJ? ¼ 0:14UC,
where UC ¼ U0a0=x is the mean centerline velocity and plotted in function of the
scaled variable z ¼ r=ax. The irregular blue, magenta, and brown lines with points
are measurements of the same quantities in a flat plate boundary layer by Shafi
and Antonia,26 plotted in function of z ¼ y=d. The black dashed curves show
v0ðzÞ=vJ?, R v0ðzÞ=vJ?, and R2 v0ðzÞ=vJ? from v0ðzÞ ¼ r1=2uv given by the mean
of PL and HCG measurements, with R ¼ ru=rv ¼ 1:35.

FIG. 18. Theoretical expectation of the ratio lB=lJ between the boundary layer
and the round jet turbulent intensity amplitudes, as given by Eq. (62). The variable z
denotes the normalized distance along the radial direction z ¼ r=ðaxÞ for the round
jet and along the direction normal to the wall z ¼ y=ðaBxÞ for the boundary layer,
where x is the axial direction along the streamwise velocity. The different curves
correspond to different values of the parameters: j ¼ ð0:37; 0:4; 0:43Þ (blue
curves); gP ¼ ð0:15; 0:175; 0:20Þ (red curves); aB ¼ ð0:025; 0:045; 0:065Þ (black
curves); a ¼ ð0:195; 0:205; 0:215Þ (green curves).
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The resulting equation no longer depends on ruv and therefore on the
Karman constant j. The decorrelation angle h is given by
T ¼ tanð2hÞ, which takes now a new form in terms of R and q:

T ¼ 2R
R2 � 1

q; (66)

and also

kUo ¼ kvo � kuvo
1
T

1þ 1� T2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ T2

p
 !

;

kVo ¼ kvo � kuvo
1
T

1� 1� T2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ T2

p
 !

:

(67)

We set, as before, WUo ¼ 1=
ffiffiffiffiffiffiffi
kUo

p
and WVo ¼ 1=

ffiffiffiffiffiffiffi
kVo

p
. Then, we

obtain a new expression for the equation S ¼ 1=Q ¼ 1:

So ¼ rvo
aB x gðR2 � 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ T2
p ðnu þ 1=2ÞWUo � ðnv þ 1=2ÞWVoð Þ;

(68)

with So ¼ 2j0S.
We find that S ¼ cst for a limited range of values of the parameter

T � ð1:18� 1:20Þ, as can be seen in Fig. 20. From this range, we find
q ¼ ð0:36� 0:41Þ for R ¼ ð1:35� 1:40Þ, which is compatible with
the interval of values obtained from directly inserting the function
lBðr; a; p; kÞ in the q expression Eq. (65).

X. DISCUSSION

Although many new results have been obtained from the scale-
relativity theory of turbulence, such as theoretical predictions of the
Karman constant value and of its variations, of the normal Reynolds
stress profile and of its amplitude, and of the velocity correlation

coefficient, there still remain a few problems and open questions that
require further work.

A first problem is that, as in the turbulent jet case, the ku equation
cannot be used in the boundary layer study since it yields a repulsive
harmonic oscillator solution for the u velocity fluctuations on most of
the normal profile. We have circumvented this problem by setting
ru ¼ R rv following the argument of Tennekes and Lumley4 and using
only the kv and kuv equations. However, this problem seems to point to
the fact that the axial component of the velocity-space Schr€odinger
equation, i.e., along the streamwise flow, is incorrect or incomplete.
A more thorough analysis of this problem will be needed.

Another possible drawback concerns the kv equation, which
depends on a parameter B0, which we have assumed to be constant.
Under this hypothesis, this parameter is replaced by the equivalent
parameter aP, which can be finally expressed in terms of gP, the posi-
tion of the maximum of rvðgÞ. This constancy hypothesis is strongly
supported by the excellent agreement obtained between our theoretical
profile solution of the kv equation and the experimental and numerical
data. However, both the consistency of the values of B0 corresponding
to its various constituents and its constancy may be questioned and
should be studied in more detail.

Using Landau’s remark that there is no fixed available scale in the
boundary layer problem, so only y can be used, has led us to suggest
that the natural length scale in the axial direction is Lx¼ y, so
Ly ¼ R�3Lx from the unity of the macroscopic Planck constant,
implying a Karman constant j ¼ R�3 � 0:4. One could argue against
this reasoning that Lx should be defined up to another unknown
numerical constant, i.e., Lx ¼ k y. However, we have also obtained the
same result from the PDF of the variable g ¼ jR3, which shows a
well-defined probability peak at g¼ 1. Since this PDF is derived from
the constraint Q ¼ cst, i.e., directly from the v-Schr€odinger equation
(which is itself a reformulation of the Navier–Stokes equations in the
turbulent K41 regime), we consider that this result is in support of our
general physics argument �a la Landau.

Further studies are needed to tackle a few questions that have not
been addressed in the present work, such as that of the lateral

FIG. 19. Predicted profile of the correlation coefficient of the ðu; vÞ velocities, for
various values of the parameters. We find that it is practically constant on the rele-
vant range g � ð0:2� 0:8Þ where the approximation R ¼ cst holds. The values of
the parameters are j ¼ 0:4; R ¼ ð1:34; 1:37; 1:4Þ, black curves; aB ¼ ð0:01;
0:045; 0:07Þ, red curves; gP ¼ ð0:12; 0:16; 0:20Þ, blue curves. The variation with
j is very weak, as expected from the direct reformulation of the equation 1=Q ¼ cst
[Eq. (68)], which no longer depends on it. We compare this almost constant theoret-
ical profile to values derived from experimental data: Sillero et al.,41 red points;
Shafi and Antonia,26 blue points; Gungor et al.,42 green points.

FIG. 20. Profile SðgÞ from Eq. (68) obtained for T ¼ ð1:18; 1:185; 1:19;
1:195; 1:20Þ, where T ¼ 2Rq=ðR2 � 1Þ and nu¼ 2, nv¼ 1, gP ¼ 0:20, and
aB ¼ 0:045. It remains almost constant as theoretically expected, here on the
range g ¼ ð0; 0:8Þ. The inset is an enlarged view showing that the small differ-
ences with S ¼ 1=Q ¼ 1 are of order a few 10�3.
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Reynolds stress profile r2wðgÞ or that of the origin of the possible values
of Coles’s wake law parameter, which is known only empirically.

Another incompleteness concerns the values of the QHO quan-
tum numbers in the Q¼ 1 equation, which we have taken to be nu¼ 2
and nv¼ 1 as representing the most probable excited state. A full solu-
tion would involve performing the same analysis for all states and
combining them according to their probability densities predicted by
statistical physics.

An interesting open question is that of the universality of
Reynolds stress profiles. We have found such a universality concerning
turbulent jets, boundary layers, channels, and pipes (and possibly other
sheared flows), which is understood as coming from the universality of
QHOs, even though the parameters in our kv equation may differ from
one flow to the other. Another form of universality has been suggested
for dissipation-scaled wall turbulence by Tang and Antonia,43 which is
difficult to compare to ours, since it applies to different scales.

We intend to tackle these open questions in a forthcoming study.
We shall also analyze in more detail the theoretically predicted depen-
dence of various quantities like j and q in function of other parame-
ters such as aB (and therefore the Reynolds number). This
dependence, which we have found to be small, may offer an explana-
tion for the experimentally observed behavior of these quantities,
which show both a global universality (e.g., j � 0:4) and small varia-
tions possibly depending on flow conditions (e.g., j ¼ 0:37; 0:39, and
0.41, respectively, for channels, boundary layers, and pipes6). Our the-
oretical predictions offer the ability to test for these variations by
searching for correlations with the relevant parameters in experimental
and numerical data.

XI. CONCLUSION

We have applied in the present work the scale-relativity approach
to the plane turbulent boundary layer problem, which concerns also,
to some extent, channels and pipes. In our analysis, we have concen-
trated on the outer region far from the wall g ¼ y=d >� 0:1, which
allows us to neglect the effect of viscosity. Moreover, the intermediate
region 0:1 < g < 0:3 has the advantage that it can be still well
described by the “law of the wall” as regards the mean velocity in
boundary layers (and even farther for channels and pipes). This allows
matching of inner and outer solutions.

In the scale-relativity theory, we have shown that the effect of a
non-differentiable and fractal space or medium is to transform the
fundamental equation of dynamics into a macroscopic Schr€odinger-
like equation. Applied to fluid mechanics and in velocity-space,11 this
means that the Navier–Stokes equations, once derivated in time and
re-integrated in velocity, are transformed in terms of a v-Schr€odinger
equation in which the potential is a manifestation of the pressure gra-
dient. We have shown that it takes in an universal way the form of a
harmonic oscillator potential.10,16

Under the boundary layer approximation, which is valid in many
flows, such as jets, flat plate boundary layers, channels, and pipes, the
pressure is the opposite of the Reynolds stress, i.e., p ¼ �r2v .
The potential in the v-Schr€odinger equation is, therefore, given by the
derivatives of the normal Reynolds stress, which ensures solving the
closure problem in these cases.

In this framework, we have been able to theoretically predict
quantities that are fundamental to turbulence, such as the Karman
constant j, the ratio of turbulent intensities R ¼ ru=rv, the profile
and amplitude l2B of the Reynolds stress r

2
v along the direction normal

to the wall, and the coefficient of correlation of velocities q. These pre-
dictions, according to which lB ¼ R � 1:35 and j ¼ q ¼ R�3 ¼ 0:4
to lowest order, are in fair agreement with the data from observations
and from laboratory and numerical experiments. In particular, the
well-known puzzle of the universality of the value q � 0:4 of the
velocity correlation coefficient in all shear flows4 has now received a
beginning of explanation, being theoretically predicted by the scale-
relativity/macroscopic Schr€odinger equation approach for round
jets,10 plane boundary layers, channels, and pipes.
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APPENDIX A: PROPERTIES OF THE REYNOLDS STRESS
SOLUTION

We have found a solution to the v-Schr€odinger equation for
the Reynolds stress r2v , which reads

r2v ¼ A l2B v
2
?

ffiffiffi
g

p
sinðaP ln gÞ: (A1)

The normalized coordinate is g ¼ y=d, where y is the distance
normal to the wall and d the width of the turbulent zone. Calling gP
the position of the peak of this function, the normalization factor is
given by A�1 ¼ ffiffiffiffiffi

gP
p

sinðaP ln gPÞ, so the peak value is r2vP ¼ l2B v
2
?,

FIG. 21. Variation of the parameter aP in the reduced expression of the Reynolds
stress r2vr ¼

ffiffiffi
g

p
sinðaP ln gÞ in function of the position gP of its maximum. The

blue curve results from a numerical calculation while the red curve is the analytical
approximation Eq. (A2).
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which defines the amplitude lB. The parameter aP is given in func-
tion of gP to an excellent approximation by

aP ¼ 3:172
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2P � g2P0

q
; (A2)

where gP0 ¼ 0:135 29 (see Fig. 21). For gP < 0:135, the normalized
expression remains valid with an imaginary parameter aP ¼ i a. In
this case, the reduced Reynolds stress may also be written in terms
of real numbers as r2vo ¼

ffiffiffiffiffiffiffiffiffiffi
g=gP

p � sinhða ln gÞ=sinhða ln gPÞ. Our
solution for the Reynolds stress is plotted in Fig. 22 for various val-
ues of the peak position gP.

APPENDIX B: VARIOUS SOLUTIONS OF THE EQUATION
Q ¼ cst

We numerically solve the equation QðR; lB; gP; aB; j; gÞ ¼ 1
by keeping only the values of the parameters for which the standard
deviation rQ with respect to the flat profile QðgÞ ¼ 1 are small (typ-
ically rQ < 0:002) in the relevant range g ¼ 0:3� 0:7.

The expression for Q [Eq. (50)] involves the Reynolds shear
stress, ruv, for which various theoretical solutions have been pro-
posed.22 The simplest is ruv ¼ 1� g.4 We have obtained a more
elaborate solution, which reads

ruv ¼ v2? 1� g 1� aB
j2

ln g
� �� �

; (B1)

while some experimental data yield slightly higher values (see Fig. 1
and references in its caption). We have considered these various
possibilities in searching for a relation between the shear stress
amplitude lB along the direction normal to the wall and the turbu-
lent intensity ratio R ¼ ru=rv.

We consider here the results of a run made with j ¼ 0:4 and
the other parameters in the ranges R ¼ ð1:2� 1:6Þ; lB
¼ ð0:8� 1:6Þ; aB ¼ ð0:03� 0:06Þ, and gP ¼ ð0� 0:4Þ.

When using the approximate expression for ruv ¼ 1� g, a fit
of the parameter subset such that rn < 0:002 yields the following,

with a high statistical significance (Student’s t> 45 for the R
coefficients):

lB ¼ 14:084� 16:94Rþ 5:57R2 � 5:34 aB þ 37:11 a2B þ 0:423 gP:

(B2)

Neglecting the dependence of lB on aB and gP, which remains small,
we obtain

lBðRÞ ¼ R0 � 2:18 ðR� R0Þ þ 5:5 ðR� R0Þ2; (B3)

where R0 ¼ 1:33 in that case.
When using the polynomial fit of [Erm and Joubert (EJ)] data

for ruv (see Fig. 1), a fit of the parameter subset such that
rn < 0:002 yields the following, with a high statistical significance
(Student’s t> 70 for the R coefficients):

lB ¼ 12:182� 13:00Rþ 3:93R2 � 3:44 aB
þ 23:0 a2B � 2:79 gP þ 7:82 g2P: (B4)

Neglecting the small dependence of lB on aB and gP, we obtain

lBðRÞ ¼ R0 � 2:15 ðR� R0Þ þ 4:0 ðR� R0Þ2; (B5)

where R0 ¼ 1:38 in that case.

APPENDIX C: ANALYTIC SOLUTION FROM POWER
SERIES

1. Power series of function Q

Another way to obtain solutions for the equation Q¼ 1 con-
sists of expanding Q in power series. Since we expect Q to be a
constant independent from g, a linear expansion Q ¼ AðR; lBÞ
þBðR; lBÞ ðg� g0Þ is sufficient and the searched solution is given
by the slope cancellation BðR; lBÞ ¼ 0. Solving for this equation
yields the solution lB ¼ lBðRÞ, which depends also slightly on
ðaB; gP , and jÞ.

Since we already know that R lies in a restricted range
R � ð1:3� 1:4Þ, we use linear expansions for R and for lB. The
power series is performed in terms of ðR� R0Þ, ðlB � lB0Þ, and
ðg� g0Þ for various numerical values of the three remaining param-
eters, aB, gP, and j. After expansion, it takes the form

Q ¼ ða0 þ b0Rþ c0lB þ d0R lBÞ þ ðaþ b Rþ c lB þ d R lBÞ g:
(C1)

Thus, the equation Q¼ 1 is translated into the slope cancellation
equation ðaþ b Rþ c lB þ d R lBÞ ¼ 0, which leads to the searched
solution:

lBðRÞ ¼ � aþ b R
cþ d R

: (C2)

We have taken g0 ¼ 0:5, R0 ¼ 1:34, and lB0 ¼ 1:34, knowing that
the final result is almost independent of this choice. These opera-
tions have been performed for numerical values of aB, gP, and j
taken in their expected range (see caption of Fig. 23). The param-
eters ða; b; c; dÞ are found to weakly depend on these values. The
result, plotted in Fig. 23, fully agrees with the previous fit
method.

FIG. 22. Solutions of the QHO v-Schr€odinger equation for the Reynolds stress pro-
files r2v [Eq. (A1)]. The function is normalized to rvðgPÞ ¼ 1, where gP is the posi-
tion of its maximum, and it is plotted for various values of this position,
gP ¼ 0:05; 0:10; 0:15; 0:20, and 0.25.
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One finds a median solution given to lowest order by

lB ¼ R0 � 2:25 ðR� R0Þ; (C3)

where R0 ¼ 1:334. Both the slope and the point R0 for which
R ¼ lB essentially agree with the result from the fit method.

The main variation comes from R while the other variables
contribute only by � 6 0:02. In order to be more specific on this
point, we have performed a power series expansion for all parame-
ters. We verify that the quadratic terms are small with respect to the
linear ones. We set n ¼ g� g0, r ¼ R� R0, m ¼ lB � lB0, a ¼ aB
�aB0, p ¼ gP � gP0, and k ¼ j� j0. For example, performing an
expansion of Q around R0 ¼ lB0 ¼ 1:344; g0 ¼ 0:5; aB0 ¼ 0:045,
gP0 ¼ 0:16, and j0 ¼ 0:4 we find

Q¼ 1� 0:026nþ 0:029n2þ 2:1 r� 0:59mþ 1:27aþ 3:6p� 0:32k;

(C4)

manifesting a very flat variation with g as expected and a small
dependence on the other parameters.

2. Full order two power series

In order to get a more complete understanding of the behavior
of the function Q ¼ QðR; lB; aB; gP; j; gÞ and of the way by which
it can become constant, we have performed a full power series
expansion of Q, linear in terms of g and up to order two in function
of all the parameters. A full analytic form of the searched function
lB ¼ lBðR; aB; gP; jÞ will then result from the cancellation of the g
coefficient.

We have performed a power series expansion around the val-
ues ðR0; lB0; aB0; gP0; j0Þ ¼ (1.35, 1.35, 0.045, 0.16, 0.40), which are
central with respect to the previously established possible range for
these parameters. This allows us to now get an explicit form for the

dependence of the relation m(r) on the other parameters. After nor-
malization to one of the constant coefficients, we find

Q ¼ 1� 0:5037mþ 2:167 r þ 1:411 aþ 4:378 p� 0:277 k

þ 1:127m2 þ 3:59 r2 � 12:92 a2 � 0:60 p2 þ 1:21 k2

þ 2:513mr þ 2:27ma� 2:97mpþ 1:03mkþ 9:65 ra

þ 7:78 rpþ 1:38 rkþ 13:7 ap� 3:91 ak� 1:64 pk

þ ð0:0543þ 1:618mþ 3:764 r � 1:771 aþ 1:070 pþ 0:632 k

� 0:0376m2 þ 10:04 r2 � 70:93 a2 � 8:30 p2 � 1:52 k2

þ 7:801mr þ 24:30ma� 1:63mpþ 1:58mkþ 48:03 ra

� 0:096 rpþ 5:59 rkþ 43:52 apþ 27:24 ak� 2:42 pkÞ n:
(C5)

We express the constancy of Q by the cancellation of the coefficient
of the n term. This equation is solved in terms of the function
m ¼ mðr; a; p; kÞ. We finally find a complete analytical expression
for m ¼ lB � 1:35:

m ¼ ð�0:0336þ 1:596a� 0:694p� 0:357k� 13:04akþ 1:29k2

� 14:90apþ 1:83kpÞ þ ð�2:161� 5:079aþ 1:297p

þ 0:421kþ 62:82ak� 6:75k2 þ 48:91ap� 9:85kpÞ r
þ ð4:317� 39:45a� 2:18p� 6:36k� 177:3akþ 39:7k2

� 249:5apþ 44:8kpÞ r2: (C6)

The resulting function and its dispersion agree with its numerical
determination as given in Fig. 23. In particular, its expression for
R ¼ lB ¼ 1:35, aB ¼ 0:045, gP ¼ 0:14, and j ¼ 0:4 in the relevant
range R ¼ ð1:3� 1:4Þ is very close to the fit of the numerical inte-
gration given by the red curve in Fig. 8. We show in Fig. 9 the
function m(r) for various values of the parameters. This analytical
result supports our general conclusion according to which lB � R.
The value for which lB ¼ R is found to be more precisely R0

¼ 1:346 0:01.
Finally, we have numerically checked the validity of this result

by comparing the PDF of the standard deviation rQ of Q values rel-
ative to Q¼ 1 under the constraint given by Eq. (55), to the PDF
obtained for all values without constraint. The result of this compar-
ison is given in Fig. 24 and is very satisfactory. The PDF obtained
while using the analytic expression for lB shows a well-defined peak
at rQ ¼ 0:002, then decreases with rQ < 0:013. This is in good
agreement with the constraint rQ < 0:002� 0:005 we have used to
numerically establish the lBðR; aB; gP; jÞ relation.

Remark that this solution, obtained from the cancellation of
the linear term of Q(n), though satisfactory since agreeing with the
numerical results, cannot be considered as yet optimal. Indeed, the
profile with smallest dispersion around Q¼ 1 may have a slope that
is small but nevertheless nonzero at n¼ 0. Actually, as can be seen
in Fig. 7, the profiles for which the standard deviation rQ with
respect to Q ¼ cst are the smallest have a W-like shape characteris-
tic of polynomials of order at least g4, with a negative parabolic
contribution �g2. We have compared these profiles with their
power series expression and found that a complete agreement can
be obtained in every case only at order g6 or g8. A more detailed
analysis of this behavior will be presented in a future work. In par-
ticular, we expect to recover in an analytic way the various

FIG. 23. Comparison between the solutions of the equation Q ¼ cst obtained by fit
with those obtained by power series. The solution by fit is given by the black points,
which are values of R and lB such that the standard deviation of Q values around
Q¼ 1 is rQ < 0:002. The dispersion between the points mainly comes from varia-
tion between the values of aB and gP. They have been slightly displaced in function
of the values of these parameters in order to distinguish them (see Fig. 9 for a
correction of their effect). The solutions by power series are found from the cancel-
lation of the g coefficient in the linear expansion of QðgÞ. The different curves corre-
spond to aB ¼ ð0:03; 0:045; 0:06Þ, gP ¼ ð0:15; 0:175; 0:20Þ, and j ¼ ð0:37;
0:40; 0:43Þ.
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properties that have been obtained by numerical methods (PDFs of
parameters and relations between them).
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FIG. 24. Comparison between the PDFs of standard deviations rQ under the con-
straint given by Eq. (55) (red histogram) to their PDF without constraint (blue histo-
gram). The analytic lB expression has been obtained by canceling the linear term
B¼ 0 in the power series expansion Q ¼ Aþ BnþO½n2	. We have cut the no
constraint PDF at rQ ¼ 0:02, but it actually continues without decreasing up to
large values � 1.
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